

Remediation Action Plan Proposed Commercial Development

> 8-10 Lee Street Haymarket NSW

> Prepared for Atlassian Pty Ltd

Project 86767.03 September 2020

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86767.03	Document No.	R.002.Rev1
Document title	Remediation Action P	lan	
	Proposed Commercial Development		
Site address	8-10 Lee Street, Hayn	narket	
Report prepared for	ared for Atlassian Pty Ltd		
File name	86767.03.R.002.Rev1		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Draft A	W. Yuan	J.M. Nash	18 June 2020
Draft B	W. Yuan	J.M. Nash	13 August 2020
Draft C	W. Yuan	J.M. Nash	03 September 2020
Revision 0	W. Yuan	J.M. Nash	04 September 2020
Revision 1	W. Yuan	J.M. Nash	25 September 2020

Distribution of copies

Status	Electronic	Paper	Issued to
Draft A	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Draft B	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Draft C	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Revision 0	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Revision 1	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Wen-fü yuan	25 September 2020
Reviewer	25 September 2020
bsi. ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO	Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Executive Summary

This Remediation Action Plan (RAP) was prepared by Douglas Partners Pty Ltd (DP) for the proposed commercial development (the Site) located at 8-10 Lee Street, Haymarket. The RAP was commissioned by Avenor Pty Ltd on behalf of Atlassian Pty Ltd and was undertaken in accordance with DP's proposal SYD190190.P.003.Rev4 dated 4 February 2020.

It is understood that the proposed development will involve a 38-storey mixed-use tower over a twolevel basement. It is understood that the proposed development at the Site is to be divided into a 'Developer Works Zone' and a 'State Works - Link Zone'. The Developer Works are proposed to include excavation for a two-level basement on the western side of Central Station [i.e., to an elevation of RL5.0 m, relative to the Australian Height Datum (AHD)] followed by construction of a multi-storey commercial tower, whereas the State Works to the west of the tower include a two-level basement to a similar elevation, with a north-south connection to proposed future, adjoining basements.

The primary objectives of the RAP are to establish the following:

- Data gap investigations in inaccessible area of the Site and following demolition of building and other underground site structures;
- Requirements to carry out suitable site validation and waste classification of soils; and
- Unexpected Finds Protocol (UFP) to be implemented during basement excavation such that any finds of suspected contamination are appropriately investigated and managed.

The RAP also addresses the following measures to be implemented during the remediation work:

- Appropriate remedial options to render the Site suitable, from a site contamination perspective, for the proposed commercial development;
- The validation assessment criteria to be adopted for the remediation of the Site;
- Appropriate environmental safeguards required to complete the remediation work in an environmentally acceptable manner; and
- Appropriate occupational, health and safety procedures required to complete the remediation work in a manner that would not pose a risk to the health of site workers or users.

It is considered that the Site can be made suitable for the proposed commercial development subject to achieving the above objectives.

Table of Contents

Page

			-	
1.	Intro	duction	1	
	1.1	General	1	
	1.2	Description of the Site	2	
	1.3	Site and Surrounding Context	3	
	1.4	Summary of Site Identification	4	
	1.5	Project Description	5	
2.	Obje	ectives	6	
3.	Site	Information	6	
	3.1	Site Description	6	
	3.2	Environmental Setting	7	
	Table	e 2: Environmental Setting	8	
4.	Site	History	8	
	4.1	Historical Information	8	
5.	Prev	ious Reports	10	
	5.1	Aargus (2017)	11	
	5.2	DP (2019a)	11	
	5.3	DP (2019b)	12	
	5.4	DP (2020)	14	
6.	Cond	ceptual Site Model	16	
7.	Rem	ediation Extent and Options	18	
	7.1	Area of Known Extent of Remediation	18	
	7.2	Data Gaps	19	
	7.3	Remediation Goals	20	
	7.4	Typical Remedial Options Available	20	
8.	Prefe	Preferred Remediation Strategy		
	8.1	Data Gap Assessment prior to Demolition	22	
	8.2	Asbestos Clearance following Demolition	22	
	8.3	Data Gap Assessment prior to Basement Excavation	23	
	8.4	Remediation of Contaminated Soils	23	
	8.5	In Situ Waste Classification of Remaining Fill	24	
	8.6	Roles and Responsibilities	24	
	8.7	Material Tracking and Disposal Records	26	
	8.8	Minimising Cross Contamination	26	

	8.9	Natural Material	26	
9.	Valida	ation Assessment Criteria	27	
	9.1	Validation Assessment Criteria	27	
		9.1.1 VAC for Soils	27	
	9.2	Soil Assessment Criteria	27	
	9.3	Health Investigation and Screening Levels	28	
	9.4	Management Limits - Petroleum Hydrocarbons	30	
	9.5	Asbestos	31	
	9.6	Classification for Off-Site Disposal	32	
	9.7	Contaminants with No Assessment Criteria	32	
10.	Samp	ble Collection and Analysis Requirements	33	
	10.1	Soil Sampling Frequencies	33	
		10.1.1 Visual Inspections and Signs of Environmental Concern	33	
		10.1.2 Validation of excavation	33	
	10.2	To.1.3 Stockpiles		
	10.2	10.2.1 Soils		
		10.2.2 Water		
	10.3	Laboratory Analysis	35	
	10.4	Quality Control and Quality Assurance	35	
11.	Wast	e Classification Requirements	36	
	11.1	Waste Classification and Off-Site Disposal	36	
	11.2	QA / QC Analysis for Waste Classification	37	
	11.3	Stockpiling of Contaminated Material	37	
	11.4	Imported Materials	37	
12.	Validation Plan			
	12.1	2.1 Data Quality Objectives and Indicators		
13. Validation Report				
	13.1	Principal	40	
	13.2	Principal Contractor	40	
	13.3	Environmental Consultant	40	
	13.4	Occupational Hygienist	41	
14.	Unex	pected Finds Protocol	41	
	14.1	General	42	
	14.2	Asbestos	42	
	14.3	Hazardous Waste	43	

15.	Site M	lanagement Plan	44
	15.1	General	44
	15.2	Vibration Control	45
	15.3	Dust Control	45
	15.4	Odour Control	45
	15.5	Disposal of Waters	46
	15.6	Stormwater Management and Control	47
	15.7	Occupational Health and Safety	47
	15.8	Hours of Operation	48
	15.9	Contingency Plans to Respond to Site Incidents	48
	15.10	Identify Regulatory Compliance	48
	15.11	Community Engagement	49
	15.12 Contact Details		
16.	Conclusions		49
17.	Glossary of Key Terms		
18.	Limita	ations	51

Appendix A:	Notes About this Report and Drawings
Appendix B:	Borehole Logs
	Summary of Analytical Results
Appendix C:	Standard Approach to Environmental Risk Assessment

Glossary of Terms

ACL	Added Contaminant Limits
ACM	asbestos cement materials
ADWG	NHMRC/NRMMC National Water Quality Management Strategy Australian Drinking
	Water Guidelines 6 (2011)
AEC	area of environmental concern
AHD	Australian height datum
ANZECC	Australian and New Zealand Environmental & Conservation Council
As	arsenic
ASS	acid sulphate soil
BaP	benzo(a)pyrene (a polycyclic aromatic hydrocarbon compound)
BaP TEQ	benzo(a)pyrene toxic equivalent
bgl	below ground level
BTEX	benzene, toluene, ethyl benzene, total xylenes (monocyclic aromatic hydrocarbons)
BTEXN	Benzene, Toluene, Ethyl Benzene, Xylenes, Naphthalene
Cd	cadmium
CEMP	construction environmental management plan
COC	chain of custody
CLM Act	Contaminated Land Management Act
Cr	chromium (total)
Cr(III)	chromium with oxidation state III (stable in normal environments)
Cr(VI)	chromium with oxidation state VI (typically not stable in normal environments)
CRC Care	Co-operative Research Centre for Contamination Assessment and Remediation of the
	Environment
СТ	contaminant threshold (screening criteria for waste classification assessment)
Cu	copper
Сх	equivalent carbon atoms in TRH/TPH groups
DCE	Dichlororethene
DDT	Dichlorodiphenyltrichloroethane
DP	Douglas Partners Pty Ltd
D.P.	deposited plan
DNAPL	Dense Non-Aqueous Phase Liquid
DSI	Detailed Site (Contamination) Investigation
DQI	data quality indicators
DQO	data quality objectives
EIL	NEPM (2013) Ecological Investigation levels
EPA	NSW Environmental Protection Authority

ESL	NEPM (2013) Ecological Screening levels
F1	TPH Fraction C6-C10
F2	TPH Fraction >C10-C16
F3	TPH Fraction >C16-C34
F4	TPH Fraction >C34-C40
GW	groundwater
GIL	groundwater investigation level
ha	hectares
HDPE	high-density polyethylene
HIL	NEPM (2013) Health Investigation levels
Hg	mercury
HSL	NEPM (2013) Health Screening levels
km	kilometre
L	litre
LNAPL	light non-aqueous phase liquid
m	metre
mm	millimetre
m²	square metre
MNA	monitored natural attenuation
mg/kg	milligrams per kilogram (or parts per million)
mg/L	milligrams per litre (or parts per million)
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
Ni	nickel
NSW	New South Wales
ND or (nd)	not detected above the practical quantitation limit
NHMRC	National Health and Medical Research Council
NRMMC	National Resource Management Ministerial Council
OCP	organochlorine pesticides
OEH	Office of Environment and Heritage
OPP	organophosphate pesticides
PAH	polycyclic aromatic hydrocarbon
Pb	lead
PCB	polychlorinated biphenyls
PCE	Tetrachloroethene
рН	unit measure of acidity / alkalinity

PID	photo-ionisation detector		
POEO Act	Protection of the Environment Operations Act		
PSH	phase separated hydrocarbons		
PQL	practical quantitation limit		
PVC	Polyvinyl chloride		
QA	quality assurance		
QC	quality control		
RAP	remediation action plan		
RL	reduced level		
RPD	relative percentage difference		
SAC	site assessment criteria		
SAQP	sampling, analysis and quality plan		
SCC	specific contaminant concentration (total concentration for waste classification		
	assessment)		
SSI	Supplementary Site (Contamination) Investigation		
TCLP	toxicity characteristic leaching procedure		
TRH	total recoverable hydrocarbons (including TPH)		
TPH	total petroleum hydrocarbons		
TOPIC	total photoionisable compounds		
µg/L	microgram per litre (or parts per billion)		
UCL	upper confidence limit of data set		
VOC	volatile organic compound		
WHS	work health and safety		
Zn	zinc		
µS/cm	MicroSiemens per centimetre a measure of conductivity and salinity		
%	percent		
<	less than		
≤	equal to or less than		
>	greater than		
≥	equal to or greater than		

Remediation Action Plan Proposed Commercial Development 8-10 Lee Street, Haymarket NSW

1. Introduction

1.1 General

Douglas Partners Pty Ltd (DP) has been commissioned by Atlassian (the Applicant) to prepare this Remediation Action Plan in accordance with the technical requirements of the Secretary's Environmental Assessment Requirements (SEARs), and in support of the SSD-10405 for a commercial and hotel development above the Former Inwards Parcel Shed (Parcels Shed) at 8-10 Lee Street, Haymarket.

Specifically, this report addresses the following SEARs:

SEARs	Report Reference
18. Contamination and Remediation: 'demonstrate compliance with the requirements of SEPP 55 and if remediation works are required include a Remedial Action Plan'	Sections 6-15 of the RAP.
18. Contamination and Remediation: 'A Preliminary Site Investigation Study if needed, and/or further information as required by SEPP55 including an Acid Sulphate Soils Management Plan.	Section 4, Section 5.1 and Table 2 of Section 3.2
Plans and Documents 'soil and contamination report, and remedial action plan'	To include this RAP as part of the Environmental Impact Statement (EIS)

In addition to the above table, the SEARS require an environmental risk analysis be included in the Environmental Impact Statement (EIS) to identify potential environmental impacts associated with the Project. The environmental risk analysis associated with soil and groundwater contamination is attached in Appendix C.

Please note that the environmental risk analysis outlined in Appendix C does not constitute a Tier 2 contamination land risk assessment, the document attached in Appendix C forms part of the SEARS requirement.

The Site location and boundaries (green and red lines) are shown on Drawing 1 in Appendix A. The RAP was commissioned by Avenor Pty Ltd on behalf of Atlassian Pty Ltd and was undertaken in accordance with Douglas Partners' proposal SYD190190.P.003.Rev4 dated 4 February 2020.

The RAP describes the works which are necessary to manage and remediate contamination identified at the Site. The strategy detailed herein comprises the removal of predominately polycyclic aromatic hydrocarbon (PAH) exceedances / hotspots in soil which appears to have impacted the groundwater.

The RAP includes an unexpected finds protocol and contingency measures to manage other issues which may arise during remedial excavations.

The scope of remediation is based on the results of previous contamination investigations and is specific to the proposed development (see Section 1.3). The assessment process, including approval of this RAP, is subject to a Site Audit by an EPA accredited Site Auditor, Mr Rod Harwood of Harwood Environmental Consultants Pty Ltd, under part 4 of the *Contaminated Land Management (CLM) Act* 1997).

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

1.2 Description of the Site

The Site is known as 8-10 Lee Street, Haymarket. It is an irregular-shaped allotment (refer Figure 1 below). The allotment has a small street frontage to Lee Street, however, this frontage is limited to the width of the access handle.

The Site comprises multiple parcels of land which exist at various stratums. All the lots are in the freehold ownership of Transport for NSW (TNSW), with different leasing arrangements:

- Lot 116 in DP 1078271: YHA is currently the long-term leaseholder of the Site;
- Lot 117 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold on this land to provide for an optimised basement and servicing outcome for the Site;
- Lot 118 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold for part of the air-rights above part of this allotment to allow for an optimised building envelope for the Project. The proposal also uses a part of Lot 118 in DP 1078271 within Ambulance Avenue for Day 1 bike access, secondary pedestrian access and fire service vehicle access; and
- Lot 13 in DP 1062447: This is currently in the ownership of TfNSW, however, TOGA (who hold the lease for the Adina Hotel) have a long-term lease of this space in the lower ground area.

The Site has an area of approximately 3,764 m² which includes 227 m² of air rights that apply from RL40.

Figure 1: Site Location and Dimensions

1.3 Site and Surrounding Context

The Site is directly adjacent to the Western Wing Extension of Central Station, and forms part of the 'Western Gateway Sub-precinct' of the Central Railway Station lands. It is situated between the existing 'CountryLink' and 'Intercity' railway platforms to the east and the Adina Hotel (former Parcel Post Office) to the west.

Existing vehicle access to the Site is via Lee Street, however, the Lee Street frontage of the Site is only the width of the access handle.

Current improvements on the Site include the Parcels Shed, which operated in association with the former Parcels Post Office (now the Adina Hotel). The Site is currently used as the Sydney Railway Square Youth Hostel (YHA). The Site also includes the western entryway to the Devonshire Tunnel, which runs east-west through Central Station under the existing railway lines.

As part of the SEARS requirements, SHoP BVN and Urbis Pty Ltd has requested DP to incorporate the following information:

The Site is situated in a well-connected location in Sydney, directly adjacent to Central Station Railway which provides rail connections across metropolitan Sydney, as well as regional and interstate

connections and a direct rail link to Sydney Airport. The Site is also within close proximity to several educational institutions and is a city fringe location which provides access to key support services.

Central Railway Station is currently undergoing rapid transformation to allow for integration of rail, metro and light rail transport infrastructure. This will elevate the role of Central Station not only for transport but also enhance opportunities for urban renewal and revitalisation of the surrounding precinct. This is one of the key drivers for the identification of the Central Station State Significant Precinct (Central SSP) and the Western Gateway Sub-precinct, to accommodate a new innovation and technology precinct.

The proximity of the Western Gateway Sub-precinct to the city, while still being located outside the core Sydney CBD, provides opportunity for it to evolve to attract technology and innovation companies. It has access to all required services while being sufficiently separate to the CBD to establish a distinct technology industry ecosystem. Its CBD fringe location will likely provide affordable commercial rents which will support 'Startups' and entrepreneurs, which are a key component of an innovation precinct.

1.4 Summary of Site Identification

A summary of Site details isprovided in Table 1, below.

Site Address	8-10 Lee Street, Haymarket
Legal Description	Lot 116 in DP1078271
	Lot 117 in DP1078271
	Part of Lot 13 in DP1062447
Geographic Co-ordinates	NE: Latitude: -33.88358, Longitude: 151.20496
	NW: Latitude: -33.88333, Longitude: 151.20415
	SE: Latitude: -33.884174, Longitude: 151.204638
	SW: Latitude: -33.884016, Longitude: 151.204308
Area	Overall site (inclusive of both the 'State Works' and 'Developer Works' zones): 3400 \mbox{m}^2
	Proposed Basement (within the 'Developer Works' zone): 1800 m ²
Zoning	Zone B8 Metropolitan Centre
Local Government Area	City of Sydney
Site Surroundings	North - Ambulance Avenue
	East - Central Station
	West - Adina Apartment Hotel
	South - Multi-storey government office building

Table 1: Summary of General Site Information

The overall site is an irregular, 'L' shape. The site boundary and different zones within the site are shown on Drawing 1, Appendix B. For the purpose of this RAP, the site covers both the State Work and Developers Work zones.

1.5 **Project Description**

As part of the SEARS requirements, SHoP BVN and Urbis Pty Ltd has requested DP to incorporate the following information. In DP's opinion, the non-italicised paragraphs below are relevant for the purposes of this RAP.

The proposed state significant development application will facilitate the development of a new mixed use development comprising 'tourist and visitor accommodation' (in the form of a 'backpackers') and commercial office space within the tower form. Retail, lobby and food and drink premises at the Lower Ground level and Upper Ground level.

Atlassian Central at 8-10 Lee Street will be the new gateway development at Central Station which will anchor the new 'Technology Precinct' proposed by the NSW Government. The new building will be purpose-built to accommodate the Atlassian Headquarters, a new TfNSW Pedestrian Link Zone, and the new Railway Square YHA backpacker's accommodation, in addition to commercial floorspace to support technology 'start-ups'.

The new development is to be built over the existing heritage Parcels Shed located on the western boundary of Central Station with the Adina hotel to the west. The works includes a 38-storey mixed-use tower with basement loading dock facilities accessed off Lee Street, 2 storey lobby utilising the Parcels Shed building, lower ground and upper ground retail, YHA hostel and commercial tower with staff amenities to the mid-level and roof top areas and a pedestrian Link Zone works for TfNSW.

The building design has been conceived to support the delivery of a site plan designed to connect with future developments to both the south and east, and integrate with a cohesive public realm for the broader Sydney community in accordance with NSW government strategic planning.

The tower design is a 'demonstration project' for Atlassian, representing their commitment to environmental sustainability and contemporary workplace settings through tower form and construction systems along with a set of emblematic outdoor workplaces stacked in the tower form.

The existing Parcels Shed will be adaptively re-used in accordance with current best practice heritage process and will form the upper level of a 2-storey entry volume that connects visually with the 2 level Link Zone. Over the roof of the Parcels Shed, a new privately owned but publicly assessible landscaped area will be created as the first part of a new upper level public realm that may extend to connect to a future Central Station concourse or future Over Station Development.

The proposed mixed-use tower directly adjoins a live rail environment to the east and public domain to the north, west and south. These works will consider these rail environments and have been designed to ensure that all TfNSW external development standards are achieved. This ensures there is no impact to the operation or safety of these TfNSW assets.

Interfaces from the overall site and especially the State works Link Zone have been designed in consultation with the adjoining stakeholders. These stakeholders include TfNSW to the north and south, Toga and the Adina Hotel operator to the west and the Dexus Fraser's site to the south. Connections via the Link Zone, through the basements and off the proposed new Link Zone dive ramp, will be designed to enable existing and future developments to function in both the 'Day 1 scenario' and 'end state', when all developers have completed their works.

The overall project aspiration is to create a world class tech precinct with effective pedestrian links through the Atlassian site to the Central Station western forecourt to Central Walk west and adjoining stakeholder's sites.

It is understood that the proposed development at the Site is to be divided into a 'Developer Works zone' and a 'State Works - Link Zone'. The Developer Works are proposed to include excavation for a two-level basement on the western side of Central Station [i.e. to an elevation of RL5.0 m, relative to the Australian Height Datum (AHD)] followed by construction of a multi-storey commercial tower, whereas the State Works to the west of the tower include a two-level basement to a similar elevation, with a north-south connection to proposed future, adjoining basements.

A copy of the basement cross sections (provided by the client) of the proposed development is provided in Appendix A.

2. Objectives

The objectives of this RAP are as follows:

- Establish an appropriate remedial strategy to render the site suitable, from a site contamination perspective, for the proposed development;
- Establish the remediation acceptance criteria to be adopted for the remediation of the site and the validation requirements to confirm the successful implementation of the remediation strategy;
- Establish appropriate environmental safeguards required to complete the remediation works in an environmentally acceptable manner; and
- Establish appropriate Work Health and Safety (WHS) procedures required to complete the remediation works in an appropriate manner that would not pose a risk to the health of site workers or users.

3. Site Information

3.1 Site Description

At the time of field investigation, the site is divided into three main components. Detailed descriptions of the three components together with photographs are included in DP (2019b) report¹. The components applied to this RAP comprise:

¹ Douglas Partners Pty Ltd, *Detailed Site (Contamination) Investigation, 8-10 Lee Street, Haymarket, August 2019* (86767.01) (DP 2019b).

1. Developers Works - Railway Square YHA Youth Hostel (RLs between 20.1 m AHD and 21.2 m AHD)

A two-storey hostel, redeveloped from the former Inwards Parcel building in 2004 (see section 4.1). The site contains four plywood rail carriages along the eastern boundary which are used for accommodation.

BH1, BH2, BH4, BH101, BH102, BH103, BH104 and BH105 are included in the Railway Square YHA Youth Hostel component of the site.

2. Developer Works - GateGourmet Rail Pty Ltd (or lower level of The Sydney Railway Square YHA) with RL 15.5 m AHD)

GateGourmet Rail is located on Ambulance Lane, a narrow street between the Western Forecourt retaining wall and Railway Colonnade Drive. It is used as a catering warehouse and is situated below the Sydney Railway Square YHA (The YHA). It is also connected to tunnels which consist of electrical switchboards, plant rooms, a chemical storage room and waste collection rooms.

BH3, BH5, BH7, BH106, BH113, BH114, BH115 are included in the GateGourmet component of the site.

3. State Works - Link Zone with RLs between 15.3 m AHD and 18.7 m AHD

The 'Link Zone' predominately comprises the Upper Carriage Lane and a commercial storage area on the lower ground level.

The Upper Carriage Lane is an asphalt-surfaced access ramp that connects Lee Street to the YHA and the adjacent Adina hotel. The ramp is also a carpark for the adjacent Adina hotel. On the top of the ramp is the carpark for the YHA.

The ramp and YHA youth hostel carpark are on bitumen-paved surface, and the YHAcarpark is located on a suspended level with a commercial storage situated below. The commercial storage area is partitioned with metal wire mesh enclosures on concrete paved floor.

BH6, BH8, BH9, BH107A, BH107B, BH108, BH109A, BH109B, BH110, BH111, BH112A, BH112B, BH116 and BH117 are included in the State Works or Link Zone part of the site.

3.2 Environmental Setting

A summary of the environmental setting is outlined below.

Regional Topography	Sloping downwards towards the northwest.
Site Topography	RL 21.2 m to RL 15.5 m; sloping downwards towards the northwest.
Soil Landscape ²	Blacktown residual soils, characterised by shallow to moderately deep red and brown podzolic soils on crests, slopes and well drained areas and deep yellow podzolic soils and soloths on lower slopes and in areas of poor drainage.
Geology ³	Ashfield Shale overlying Hawkesbury Sandstone.
Acid Sulfate Soils ⁴	The site is in an area of low probability of Acid Sulfate Soils (ASS) occurrence.
Surface Water	No surface water was observed to be present on site; surface water is expected to drain in the same direction as the regional topography.
Groundwater	Inferred groundwater flow direction is north-northwesterly direction towards Darling Harbour which is located approximately 1.1 km northwest of the site.

Table 2: Environmental Setting

4. Site History

4.1 **Historical Information**

Historical information of the site and nearby sites were sourced from: Rappoport⁵ (2014) report and reviewed to identify possible uses of the site and surrounding properties.

The following summarises the key findings of the historical resources review.

The Site and Surrounding Area

The land title information provided suggested that the site was initially granted for use as a cemetery between 1878 and 1937. From 1964 to the current date, the site was owned by State Rail. Further research via WP (2019)⁶ report and the National Library of Australia indicated that the site was used as part of the former Sydney Benevolent Asylum (The Asylum) between c. 1820 and 1996. The Asylum served as a refuge place for the poor, abandoned, destitute and sick. The Asylum and associated outbuildings were demolished from 1901 to provide room for the Central railway station.

² Sydney 1:100 000 Soils Landscape Sheet.

³ Sydney 1:100,000 Geological Series Sheet.

⁴ NSW Acid Sulfate Soils Risk mapping data from NSW Department of Environment and Climate Change.

⁵ Rappoport Pty Ltd, Statement of Heritage Impact on Lee Street Substation, Central Station, Sydney, May 2014 (Project Number 2043 - D7) (Rappoport 2014);

⁶ Weir Phillips Heritage and Planning Pty Ltd, Letter Report on Heritage Impact Statement: Standard Exemption s57(2) - Former Inwards Parcels Shed - No. 8-10 Lee Street, Sydney, April 2019 (WP 2019).

The Devonshire Street Cemetery (or the Old Sydney Burial Ground) was constructed in 1820 and located to the east of the subject site. The subject site had been granted for use as a cemetery in the late 1870s and mid-1900s. Information from the National Library of Australia indicated that the cemetery was later moved to allow for the development of Central railway station and the remains of deceased persons were removed and relocated elsewhere.

A locality map showing the location of the former Asylum and the Devonshire Street Cemetery is depicted below.

Figure 1: A Locality Map Dated c. 1887, Showing Location of the Site, the Asylum and the Old Cemetery Sourced from Rappoport (2014)

Figure 2: Aerial View of the Site, 1943, Showing the Site, Former Inwards Parcel Shed and Western Shed, Sourced from SIX Maps

The historical aerial photography indicated land use of the site and the adjoining properties was commercial / industrial from 1943 to the current date. The site owner and Rappoport (2014) indicated that the site was used as a parcel shed for the storage of Post Office's parcels transported by train. The shed was redeveloped into a two-storey backpacker hostel. It is presumed the redevelopment occurred c. 1998 during the development of the adjacent Henry Deane Plaza to the south-west of the site.

The major function of the western yard (to the south-west of the site depicted on Figure 2) constructed c. 1904, revolved around shunting which became obsolete by the late 20th Century. The shed was also used for the cleaning of carriages and storage of coal and water for steam locomotives.

The former inwards parcel shed and the site (former parcel shed) shown on Figure 2 were used for the storage / loading of parcels for transfer to or from the nearby Parcels Post Office. Demand for delivery of parcels by rail declined and the inwards parcel shed, and the western shed were demolished in 1998 to allow for the redevelopment of the construction of the Henry Deane Plaza.

5. **Previous Reports**

Relevant sections of the following reports, in chronological sequence, were reviewed and summarised in the subsequent sub-sections:

- Aargus Pty Ltd, *Preliminary Site Investigation, 8-10 Lee Street, Haymarket, November 2017* (Project ES7106) (Aargus 2017);
- Douglas Partners Pty Ltd, Hazardous Building Materials (HBM) Register, 8-10 Lee Street, Haymarket, July 2020 (86767.02) (DP 2019a);
- Douglas Partners Pty Ltd, *Detailed Site (Contamination) Investigation, 8-10 Lee Street, Haymarket, August 2019* (86767.01) (DP 2019b); and

• Douglas Partners Pty Ltd, Supplementary Site (Contamination) Investigation, 8-10 Lee Street, Haymarket, June 2020 (86767.03) (DP 2020).

5.1 Aargus (2017)

Aargus reported that the site was occupied by a two-storey, YHA hostel building with four refurbished plywood rail carriages along the eastern boundary. The rail carriages are used for accommodation by the hostel. The building was covered with concrete with some minor cracks and staining observed. A timber alfresco area located in the southern corner of the hostel building now covers a previous swimming pool which was backfilled.

A lower level catering warehouse occupies the footprint of the YHA building and adjoining carpark. A bitumen driveway and car park with major cracks and oil staining observed. The Devonshire Street Tunnel extend out from the boundaries of the YHA building.

The land title information indicated the site was initially granted for use as a cemetery between 1878 and 1937. From 1964 to the current date, the site was owned by State Rail. The aerial photography review indicated land use of the site and the adjoining properties appeared to have been industrial / commercial from 1943 to present.

The following areas of potential environmental concern include:

- The potential importation of uncontrolled fill to backfill the former swimming pool and/or other areas of the site;
- Current and previous site uses including: parcel storage shed, potential use of pesticides, chemical and paint storage and metal degradation; and
- Bitumen car park areas: oil leaks and spills may have occurred and asbestos based building materials.

Aagus concluded that overall, the contaminants that may be present in some of the areas were likely to be low in terms of risk to the human and environmental receptors. Aargus also stated that: '...the site will be suitable subject to the completion of a detailed site investigation and followed by remediation and validation (if required)...'. Aargus also recommended that '...a hazardous building material (HBM) survey be undertaken followed by a clearance assessment...'.

5.2 DP (2019a)

The survey was undertaken by DP in June 2019, in conjunction with the detailed site (contamination) investigation referenced as DP (2019b) investigation, to assess the location, extent and condition of asbestos-containing materials (ACM) and other hazardous building material (HBM) in accessible areas of the 'Developer Workers' zone. The 2019 survey consisted of a visual inspection supplemented by a limited program of sample collection and laboratory analysis.

A summary of HBM either identified or assumed in the 'Developer Workers' zone (i.e., GateGourmet or YHA Youth Hostel) during the DP (2019a) survey is outlined in the table below.

Table 3: Summary of Results

Building / Area	Non-Friable Asbestos	Friable Asbestos	SMF	Lead Paint	Lead Dust	РСВ
GateGourmet Rail	~	×	✓	✓	✓	×
YHA Youth Hostel	×	×	✓	✓	✓	×

SMF = synthetic mineral fibre, PCB = polychlorinated biphenyls, \checkmark = identified and/or assumed present, \star = not identified or not assumed present.

Access was restricted to certain areas of the site including the commercial storage area on the lower ground level of the 'Link Zone' (State Works) at the time of DP (2019a) survey.

The (DP 2019a) report indicated that: 'inaccessible areas should be assumed to contain HBM unless assessment of these areas by a Competent Person confirms otherwise'.

The report also stated that: 'HBM should be managed in accordance with the requirements of the NSW Work Health and Safety (WHS) Act 2011 (WHS Act), NSW WHS Regulation 2017 (WHS Regulation) and relevant Codes of Practice, Australian Standards and Guidelines'.

The DP (2019a) report recommended: '*HBM should be removed prior to any significant disturbance including from maintenance, refurbishment and demolition work*'.

5.3 DP (2019b)

The results of the detailed site (contamination) investigation (DSI) are summarised below. The soil, waste class and groundwater results of DP (2019b) investigation, together with the results of DP (2020) investigation are summarised in Tables F1-F3 attached in Appendix B.

DP (2019b) reported that analytical results for soil samples were within the SAC for the proposed commercial land use, except for one benzo(a)pyrene TEQ [B(a)P TEQ] exceedance in sample BH3/0.2-0.3. The reported B(a)P TEQ concentration of 42 mg/kg had marginally exceeded the health-investigation level (HIL) of 40 mg/kg. The recorded exceedance was, however, noted to be statistically insignificant when considering the entire sampling data set.

It was noted in the DP (2019b) report that the immediate, underlying sample, BH3/0.7-0.8, contained a much lower concentration of B(a)P TEQ of 6.3 mg/kg, which was well within the HIL, indicating that the vertical extent of B(a)P TEQ contamination was likely to be limited to the overlying, near-surface fill material.

The B(a)P TEQ exceedance in soil identified during the DP (2019b) investigation may have resulted from uncontrolled fill activity in the past. B(a)P occurs naturally in coal, crude oil and gasoline and is produced (along with other PAHs) when coal, oil, gas, wood, etc. are burned. Historical information in DP (2019b) report indicated that the western shed in the adjacent site was used for the storage of coal for steam locomotives and ash (a by-product of coal) in fill was observed in boreholes: BH1, BH2 and BH4 during the DP (2010b) investigation.

Concentration of contaminants in all analysed fill/soil samples were within the contaminant thresholds (CT1s) for General Solid Waste (GSW) identified during DP (2019b) investigation, except for concentration of B(a)P in soil sample, BH3/0.2-0.3. DP (2019b) report indicated that the concentration of B(a)P in soil sample, BH3/0.2-0.3, was above the Restricted Solid Waste (RSW) threshold and was provisionally classified as Hazardous Waste (HW) during the DP (2019b) investigation. The B(a)P leachability result in sample BH3/0.2-0.3 indicated in the DP (2019b) report were below the laboratory's practical quantitation limit.

Concentration of contaminants in all tested, natural soil samples were within the published background ranges for Australian soils except for the concentrations of B(a)P and PAH in soil sample, BH6/0.2-0.3. The concentration of B(a)P and PAH in soil sample, BH6/0.2-0.3 were above the GSW thresholds (i.e., both CT1 and SCC1). The natural material in BH6/0.2-0.3 was provisionally classified as Restricted Solid Waste (RSW) during DP (2019b) investigation.

A review of soil samples and associated chromatograms during the DP (2019b) investigation indicated that trace ash/coal was observed in samples BH3/0.2-0.3 and BH6/0.2-0.3. The NSW EPA has issued a general immobilisation approval for ash / coal-contaminated materials, which allows waste classification for such material based on their leachability concentration (TCLP) value alone. It was, therefore, possible that this approval could be applied to both materials but would require further assessment to confirm.

Concentration of contaminants of concern were within the groundwater investigation levels (GILs) identified during DP (2019b) investigation, apart from copper and zinc levels in samples: BH8, BH5 and BD1/20190730 (replicate sample of BH5). The elevated levels of coper and zinc were considered in the DP (2019b) report: '...to be within the normal range of background concentration in heavily urbanised areas of Sydney, and therefore, no further assessment of metals in BH5 and BH8 was considered necessary...'.

DP (2019b) report recommended that the site could be made suitable for the proposed development subject to the following requirements:

- Conducting additional soil sampling and testing using in situ or ex situ sampling methods to characterise the data gap areas of the site (e.g., the Link Zone) and to confirm the waste classification for surplus soils requiring off-site disposal;
- Carrying out intrusive soil investigation within the footprint of the existing building following demolition. Care should be taken during demolition to prevent cross-contamination of subsurface soils with hazardous building materials such as asbestos. The correct handling and removal procedures for hazardous building materials are described in the concurrent hazardous material building report (referenced as 86767.01.R.001.Rev0) [i.e., DP 2019a]; and
- Preparing an unexpected finds procedure as part of the civil and construction site management plan, such that unexpected finds of contamination (e.g. asbestos, odorous soils or seepage water) are managed appropriately.

5.4 DP (2020)

Following DP (2019b) recommendation of additional soil sampling to address site data gaps, a Supplementary Site (Contamination) Investigation (SSI) was carried out between April and June 2020. The key findings of the SSI are summarised below.

The soil, waste class and groundwater results of DP (2020) investigation, together with the results of DP (2019b) investigation are summarised in Tables F1-F3 attached in Appendix B.

Soil samples were analysed for the contaminants of concern identified in the DP (2019b) conceptual site model (CSM) including: heavy metals, TRH, PAH, BTEX, OCP, OPP, PCB, phenols and asbestos.

DP (2020) analytical results of soil samples were within the adopted SAC for commercial land use with the following exceptions:

- TRH F3 (>C16-C34) in samples BH106/0.3-0.4 (3600 mg/kg) which marginally exceeded the ML of 3500 mg/kg; and
- B(a)P TEQ in samples BH106/0.3-0.4 (160 mg/kg at hotspot level), BH114/0.15-0.2 (81 mg/kg), BH114/0.2-0.3 (43 mg/kg) and BH117/0.2-0.25 (71 mg/kg) which exceeded the HIL of 40 mg/kg.

DP (2020) indicated that PAH contamination in fill / soil appeared to be prevalent in the north-western portion of the site with B(a)P TEQ concentrations above the HIL detected in boreholes: BH114, BH106 and BH117, and elevated concentrations of PAH (below the HIL) detected in boreholes BH113 and BH115.

DP (2020) also indicated that 'BH106 and BH114 are located within the approximate outline of the proposed basement and will likely be removed from site under an appropriate waste classification for the final development'. BH117 is located approximately 7 m west of the proposed basement outline, within the 'State Works' zone, and may remain on site. Additional waste classification to classify the PAH contamination around BH117 is recommended should excavation be required in this area.

The likely source of B(a)P TEQ and TRH F3 (>C16-C34) contamination in fill / soil, identified during the DP (2020) investigation, was the coal inclusion in fill. This was further supported by the chromatograms as well as finding of coal in fill during the earlier DP (2019b) investigation.

Concentrations of contaminants for the analysed fill / soil samples were within the contaminant thresholds (CT1) and SCC1 (specific contaminant concentration) / TCLP1 (leachable concentration) for General Solid Waste (GSW) identified during the DP (2020) investigation, except for B(a)P and total PAH in some samples outlined below.

The following samples exceeded the CT1 and SCC1/TCLP1 for GSW and were classified as **Restricted Solid Waste** (RSW) during the DP (2020) investigation:

- BH113/0.15-0.25 (12 mg/kg); and
- Total PAH in BH106/0.2-0.3 (320 mg/kg), BH114/0.2-0.3 (470 mg/kg), BH115/0.23-0.3 (440 mg/kg) and BH117/0.2-0.25 (770 mg/kg).

The following samples exceeded the CT2 and SCC2/TCLP2 for RSW and were classified as Hazardous Waste:

- B(a)P in the blind duplicate for BH104/1.4-1.5 (14 mg/kg), BH106/0.2-0.3 (28 mg/kg), BH106/0.3-0.4 (120 mg/kg), BH114/0.15-0.2 (67 mg/kg), BH114/0.2-0.3 (31 mg/kg), BH115/0.25-0.3 (27 mg/kg) and BH117/0.2-0.25 (39 mg/kg); and
- Total PAH in BH106/0.3-0.4 (1400 mg/kg) and BH114/0.15-0.2 (860 mg/kg).

Soil samples classified as RSW and Hazardous Waste were noted to be contaminated with ash and/or coal during the DP (2020) investigation. Given the low leachability of B(a)P and PAH in the samples analysed during DP (2020) investigation, it was considered the immobilisation approval could be applied to the samples containing concentrations of B(a)P and PAH which exceeded the GSW and RSW criteria. Therefore, the material in proximity of boreholes: BH104, BH106, BH113, BH114 and BH115 where coal and / or ash were observed could be potentially classifiable as GSW under the *Immobilisation of Contaminants in Waste 1999/05* subject to further *ex situ* waste classifications during basement excavation.

Concentration of metals for the analysed seven natural soil samples were within the published concentrations in NSW EPA *The Excavated Natural Material Order 2014*. Concentrations of B(a)P and total PAH were above the limit of reporting (LOR) but within the published concentrations in NSW EPA *The Excavated Natural Material Order 2014* except for BH108/0.23-0.25 which recorded a B(a)P concentration of 2.7 mg/kg and was given a preliminary waste classification of RSW. It was noted that this sample was taken 0.03 m below a concrete slab, directly beneath a very thin layer of fill material. It was, therefore, considered likely that the elevated concentration of B(a)P is limited to the near-surface material.

Analytical results for groundwater were within the adopted GIL with the following exceptions:

- Copper in BH103 (3 μg/L), its replicate sample BD1/20200424 (26 μg/L) and BH104 (2 μg/L) which exceeded the GIL of 1.4 μg/L; and
- Zinc in BH107A (140 μg/L), BH107B (64 μg/L), BH112B (21 μg/L) and its replicate sample BD1/160520 (20 μg/L) which exceeded the hardness modified GILs of 36.69 μg/L, 34.94 μg/L and 16.64 respectively.

Detectable levels (below the GILs) of PAH and TRH in groundwater were also noted during DP (2020) investigation.

The elevated levels of copper and zinc in groundwater are common in heavily urbanised areas such as Haymarket. The source of copper and zinc is uncertain but could be linked to the copper and zinc concentrations in the fill layer on site, or to the services network at the site or in proximity to the site, as elevated levels of copper and zinc were identified in both the upgradient and downgradient groundwater wells. However, considering that elevated levels of copper and zinc were not evident in the fill, the copper and zinc levels identified in the groundwater wells at the site are likely to represent regional background levels rather than site-specific levels.

Based on the results of the SSI, it was considered that the site can be made suitable for the proposed commercial development subject to the following recommendations:

- Delineation of the PAH contamination in the northeast portion of the site, particularly within the 'State Works' zone around BH106, BH114 and BH117 to the extent practical;
- Further investigation of groundwater on site, particularly to assess the presence of TRH and PAH in groundwater across the site prior to and during dewatering. It is likely that a groundwater management plan will be required as part of the application for a dewatering license;
- Intrusive investigation of the footprints of the existing buildings following demolition. Care should be undertaken during demolition to prevent cross-contaminating the subsurface soils with hazardous building material such as asbestos. The correct handling and removal procedures for hazardous building materials are detailed in the hazardous material building report;
- Prepare a remedial action plan including an unexpected finds procedure as part of the civil and construction site management plan, such that existing contamination and unexpected finds of contamination (e.g., asbestos, odorous soils or seepage water) are managed appropriately; and
- Conduct additional soil sampling and testing, either using in situ or ex situ sampling methods, to provide a final waste classification for surplus soils requiring off-site disposal.

In addition, it was noted in the DP (2020) report that there is the potential presence of asbestos-cement service pits and underground pipes/conduits within or in proximity of the proposed development area. Uncontrolled disturbance of such items (i.e., during bulk excavation) could potentially cross-contaminate surrounding soil / fill, resulting in unnecessary waste (e.g., asbestos-contaminated fill / soil) and additional disposal costs for the project.

DP had undertaken an HBM survey and a non-intrusive assessment for asbestos-cement service pits and underground pipes / conduits within the footprint of the proposed development in conjunction with DP (2020) investigation. The survey also included the previously inaccessible area such as the lower ground level of the 'Link Zone'. The results of this survey will be reported as a separate document in due course.

6. Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contaminants of potential concern (COPC) either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways). The CSM is modified following DP (2020) investigation, summarised in the table below.

Table 4: Summary of CSM

Source / COPC	Transport Pathway	Receptor	Remediation / Management Options
S1 - Uncontrolled fill and building rubble associated with demolition of former buildings COPC include: metals,	 P1 - Ingestion and dermal contact P2 - Inhalation of dust and / or vapours 	R1 - Maintenance and construction workers R2 - Current and future users	R1 - Adoption of appropriate Administrative Controls and Work Health & Safety procedures. R2 - Removal of fill with TRH
S2 - Current and historical site uses such as parcel	P2 - Inhalation of dust and / or vapours	R3 - Adjacent users (residential and commercial)	and PAH exceedances / hotspot; during basement excavation; or remove exposure pathway (e.g., capping of PAH contamination in BH117 if to be retained on site.
shed and railway COPC include: metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols, SMF*, VOC, asbestos and cyanide.	P3 - Leaching of contaminants and vertical mitigation into groundwater	R4 – Groundwater R5 - Darling Harbour	R3 - R5 - Removal of source in groundwater i.e., TRH and PAH contamination in fill / soil during basement excavation; reduce the risk of off-site migration of contaminants in groundwater.
S3 - Degradation of building material from existing buildings and underground tunnel structures.	 P4 - Surface water run- off P5 - Lateral migration of groundwater. 		
COPC include: metals, PCB, SMF and asbestos.			

Note: * SMF analysed as part of the HBM survey documented in DP (2019a) report.

7. Remediation Extent and Options

7.1 Area of Known Extent of Remediation

The table below outlines the area of known extent of remediation requiring delineation, remediation, management and/or consideration. Table 5A should be reviewed in conjunction with Drawing 3 in Appendix A.

Table 5A: Area of Known Extent of Remediation

Contamination Issue	Borehole / Depth	Contaminant Level vs Site Assessment Criteria	Comment
TRH and / or PAH Contaminated soil	BH3/0.2-0.3	B(a)P TEQ = 42 mg/kg vs 40 mg/kg (HIL D ⁷)	To be excavated and removed as part of the basement excavation within the 'Developer
	BH106/0.3-0.4	TRH > C16-C34 = 3,6000 mg/kg vs 3,500 mg/kg (ML – Commercial ⁸); and	WORS alea.
		B(a)P TEQ = 160 mg/kg vs 40 mg/kg (HIL D ⁶)	
	BH114/0.15-0.2	B(a)P TEQ = 81 mg/kg vs 40 mg/kg (HIL D ⁶)	
	BH114/0.2-0.3	B(a)P TEQ = 43 mg/kg vs 40 mg/kg (HIL D ⁶)	
	BH117/0.2-0.25	B(a)P TEQ = 71 mg/kg vs 40 mg/kg (HIL D ⁶)	To be excavated and removed as part of the proposed development within the 'Link Zone' (State Works); or
			To be retained on site and capped under the existing concrete pavement subject to the implementation of an environmental management plan.

⁷ Health investigation levels – Commercial and Industrial in NEPC (2013)

⁸ Management Limits – Commercial and Industrial in NEPC (2013)

Remediation Action Plan, Proposed Commercial Development

7.2 Data Gaps

The table below outlines the data gaps requiring characterisation. Table 5B should be reviewed in conjunction with Drawing 4 in Appendix A.

Contamination Issue	Borehole / Depth	COPC	Comment
TRH and / or PAH Contaminated soil	5 m and 10 m step-out boreholes centred from BH3/the base of fill layer	TRH and / or PAH	The step-out boreholes drilled during the (DP 2020) investigation were limited to the surrounding walls and other internal features such as cool rooms near BH3.
	5 m and 10 m step-out boreholes centred from BH6/the base of fill layer		Additional step-out boreholes including 5 m and 10 m step-out boreholes should be carried out following demolition of site building and other structures or prior to basement/bulk excavation.
Inaccessible areas such as the cool rooms in GateGourment Rail at the time of DP (2019) and (2020) investigations.	Three (3) additional boreholes drilled to 0.5 m into natural soil to be undertaken across the footprint of the existing cool rooms following vacancy of the area after the site is handed over to the builder.	COPC listed in Table 4	Three (3) additional boreholes drilled to 0.5 m into natural soil to be undertaken across the footprint of the existing cool rooms following vacancy of the area (or after the site is handed over to the builder).
Potential finds of contaminants during basement excavation	Seven (7) additional test pits excavated across the footprint of the basement area following demolition of site building and other structures (e.g. concrete slabs and footings) or prior to basement/bulk excavation.	COPC listed in Table 4	To assess the potential for cross- contamination of hazardous building material with surficial fill following demolition and the expected subsurface conditions following demolition or prior to basement/bulk excavation.

Table 5B: Data Gaps

It should be noted that the RAP will be revised based on the findings of the data gap investigations outlined in the above table and detailed in Sections 8.1-8.3.

7.3 Remediation Goals

The remediation goals are as follows:

- Break or appropriately manage the source-pathway-receptor linkages identified in the CSM;
- Render the site suitable, from a contamination standpoint, for the proposed development;
- Minimise and appropriately manage / monitor any off-site migration of contamination from the site; and
- Provide documentation on remediation planning (PSI, DSI, SSI and RAP), implementation and validation (VR) for auditor review.

7.4 Typical Remedial Options Available

Possible remedial options to achieve the remedial goals are identified as follows:

- No action;
- Treatment (on- or off-site);
- Off-site disposal to an approved / licensed site / waste facility; and
- Physical barrier systems.

The following table presents a review of remediation options.

Table 6:	Evaluation	of Remedial	Options
----------	------------	-------------	---------

Remedial Options	Assessment of Options
No Action Required	The "No Action" option involves no remedial response to the contamination identified on the subject site.
	The investigations conducted on the site indicated that remediation action is required and where site contamination is identified, a no action approach would be rejected for the following reasons:
	• The risks to human health and/or the environment from the identified soil contamination would be unacceptable under the proposed development; and
	• It does not provide any means to improve the current condition of the site.
On-Site Treatment of	Some of the on-site soil treatment options include:
Contaminated Soil	• Bio-remediation: Addition of oxygen and nutrient compounds to accelerate the natural process of organic compound decay within the environment. Not suitable for all contaminants.
	• Soil Washing: Soil is stripped of contaminants via a leaching process and the concentrated contaminated liquid product retained for disposal or treatment.
	• Air Sparging and Extraction: Air is forced through the contaminated soil to volatilise organic contaminants. The air is then extracted and captured for treatment leaving reduced contaminant concentrations; and

Remedial Options	Assessment of Options
	• Thermal Desorption: Contaminated soils are heated within an incinerator to volatilise or combust the contaminants. Contaminants are trapped within an air filtration system.
	Concentrations and / or volume of impacted soils would be conducive to on-site treatment in general. An exception may be small scale bio-remediation (land farming) of hydrocarbon impacted soils.
Off-Site Disposal of Contaminated Soil	Off-site disposal of contaminated material is considered a suitable option for managing human health and environmental impacts from the contaminated materials.
	Off-site disposal comprises the excavation of soil, classification of spoil, and disposal to a facility which can legally receive it. It is noted that soil classified as hazardous waste identified during <i>ex situ</i> classification will require treatment.
	Given that the proposed development involves a deep basement excavation, off- site disposal of contaminated soils (if identified) will be the primary remediation approach adopted.
Containment of Contaminated Soil	This would include the placement of an impermeable barrier such as concrete, warning barrier, non-contaminated soil material over existing ground surface to isolate contaminated material.
	The advantage of this option includes the reduction of transport contaminants via wind and water mechanisms.
	The disadvantage of this option includes the implementation of an environmental management plan which is required to be documented in the council planning certificate and / or title deeds which would in turn impact future land development and value.
	Given that the proposed development will involve basement excavation, capping and containment will not generally be feasible for this project apart from the 'Link Zone' (State Works).

8. Preferred Remediation Strategy

The most suitable option for remediation of TRH and PAH-contaminated soils is delineation and excavation of contaminated material followed by off-site disposal to an appropriate waste facility. This option is considered most appropriate for the following reasons:

- TRH and PAH-contaminated soils near BH3 and BH6 are either within or in proximity of the basement footprint. Excavation of soils near BH3 and BH6 is expected as part of the proposed basement and would not constitute additional work; and
- On-site treatment of PAHs associated with ash and coal are relatively intractable and are, therefore, considered to be unreliable and expensive, particularly for relatively small quantities of contaminated soils.

Delineation of TRH and B(a)P in soil aims to refine the classification of contaminated waste vs. non-contaminated waste.

A summary of the remediation procedures including data gap assessment and *in situ* waste classification assessments is provided below. It was noted by the Site Auditor that 'these data gaps (i.e., Sections 8.1 and 8.3) will be closed out before the RAP is finalised'.

8.1 Data Gap Assessment prior to Demolition

The following data gap assessment is proposed prior to demolition works:

- Drill three boreholes evenly distributed across the footprint of the cool rooms following vacancy of the 'GateGourmet' area (or after the site is handed over to the builder);
- Sample each of the boreholes at 0.2 m below the pavement and then at every 0.5 m interval to a maximum of 0.5 m into natural soil or prior refusal;
- Test selected samples (including field replicates, trip blanks, trip spikes and rinsates) for COPC listed in Table 4; and
- Prepare a letter report or update DP (2020) report to address the data gap analysis.

The above scope should be considered as part of the sampling & analysis quality plan (SAQP) for the proposed data gap assessment. The locations of the data gap investigation boreholes to be undertaken prior to demolition are depicted on Drawing 4 in Appendix A.

8.2 Asbestos Clearance following Demolition

The following asbestos clearance can be considered following demolition works:

- Removal of asbestos from the buildings, underground service pits and ground surface (if present) by the Asbestos Demolition Contractor as part of the demolition programme;
- Removal of visible asbestos from the ground surface (if present) by the Asbestos Demolition Contractor following demolition of the buildings and removal of hardstand; and

• Conduct an asbestos clearance inspection by the Occupation Hygienist of the surficial soils following removal of the hard stand for any signs of contamination, potential contamination sources, or local variations in soil conditions.

8.3 Data Gap Assessment prior to Basement Excavation

The following data gap assessment is proposed prior to basement excavation:

- Locate BH3 and BH6 by using a differential GPS on site following demolition of site building and other structures (e.g., concrete pavement and footing);
- Conduct 5 m and 10 m step-out test pits or boreholes centred from BH3 and BH6 using an excavator or hand tools;
- Excavate to 0.5 m into natural soil or prior refusal;
- Sample each of the test pits / boreholes at surface then at every 0.5 m interval to a maximum of 0.5 m into natural soil or prior refusal;
- Test selected samples (including field replicates, trip blanks and rinsates) for PAH and / or TRH; and
- Update the RAP to address the full extent of PAH and / or TRH-contaminated areas.

The above scope should be considered as part of the Sampling & Analysis Quality Plan (SAQP) for the proposed data gap assessment. The locations of the data gap investigation boreholes prior to basement excavation are depicted on Drawing 4 in Appendix A.

It should be noted that the RAP will be revised based on the findings of the data gap investigations outlined in Table 5B and Sections 8.1-8.3.

8.4 Remediation of Contaminated Soils

The specific remediation works for the PAH and / or TRH-contaminated soils are outlined below:

- Check PPE and WHS requirements prior to commencement of remediation;
- Prior to the commencement of excavation, the remediation area(s) should be clearly marked with spray paint and pegs;
- Clear underground services and other underground structures or obstructions in the area prior to excavation;
- Stockpile the contaminated material separately on builder's plastic (or similar);
- Confirm the final waste classification of the contaminated material. It was noted in DP (2019b) and DP (2020) reports that the coal / ash-contaminated materials near BH3 and BH6 could be potentially classifiable as GSW under the *Immobilisation of Contaminants in Waste 1999/05* subject to further *ex situ* waste classifications;
- Submit the final waste classification letter report of the contaminated material to an NSW EPA licensed landfill to receive the waste;

• Obtain validation samples from the walls and base of the excavation as outlined in Section 12.1. The results of the validation testing should be assessed against the Validation Assessment Criteria (VAC) adopted for the remediation work;

In the event of unsuccessful validation, further excavate the areas that failed and re-validate as outlined above; and

• Prepare a validation report documenting the above remediation work.

The locations of the identified contaminated soils are shown on Drawing 3 in Appendix A.

8.5 *In Situ* Waste Classification of Remaining Fill

Confirmatory *in situ* waste classification of the remaining fill within the basement footprint following demolition and remediation works is described as follow:

- Excavate seven (7) test pits across the basement footprint to 0.5 m into natural soil or prior refusal;
- Sample each of the test pits at surface then at every 0.5 m interval to a maximum of 0.5 m into natural soil or prior refusal;
- Test selected samples (including field replicates) for COPC listed in Table 4; and
- Prepare an *in situ* waste classification letter report.

8.6 Roles and Responsibilities

A summary table of roles and responsibilities during the remediation work is outlined below.

Role	Responsibility
Principal and Principals Representative	The Principal is responsible for the environmental performance of the proposed remediation work, including implementation of acceptable environmental controls during site work. The Principal will retain the overall responsibility for ensuring this RAP is appropriately implemented. The Principal is to nominate a representative (the Principal's Representative - PR), who is responsible for overseeing the implementation of this RAP. The Principal will also be responsible for acquiring all necessary approvals for the remediation works proposed, including approval from the consent authority.
Principal Contractor and Site Manager	The Principal Contractor (referred to herein as the Contractor) is foreseen to be the party responsible for the day-to-day implementation of this RAP and shall fulfil the responsibilities of the Principal Contractor as defined by SafeWork NSW.

 Table 7: Roles and Responsibilities

Role	Responsibility		
	It is noted that the Contractor may appoint appropriately qualified sub-contractors or sub-consultants to assist in fulfilling the requirements of the procedures.		
	The Principal Contractor will nominate a Site Manager who will be responsible for day to day site management and first response to any unexpected finds encountered during works.		
Asbestos Contractor (if required)	The Asbestos Contractor will be responsible for undertaking asbestos related work and will include an employee who is a licenced removalist with a Class A or B licence (issued by SafeWork NSW) who will be the works supervisor.		
	The Asbestos Contractor and Principal Contractor can be the same entity.		
Project Surveyor	The project surveyor will be a Registered Surveyor and will be responsible for undertaking the surveying work detailed herein at the instruction of the Principal Contractor.		
	The Environmental Consultant will be responsible for:		
	Overseeing the remediation work;		
	• Undertaking the required assessments for disposal of liquid and solid wastes;		
	• Providing any monitoring activities which may be required which do not directly relate to final site validation (e.g. for odours and air quality);		
	 Providing advice on issues under the POEO Act; 		
Environmental Consultant	 Undertake all validation assessment work, including inspections, sampling and reporting; 		
	 Notifying their client with the results of any assessments and any observed non-conformances in a timely manner; and 		
	• Provide advice and recommendations arising from inspections/ observations.		
	The Environmental Consultant and Occupational Hygienist can be the same entity.		
	The Occupational Hygienist will be suitably qualified / licenced as required in accordance with the WHS Regulations.		
	The Occupational Hygienist will be responsible for:		
	 Preparing any WHS plans and advice requested by the Contractor; 		
Occupational Hygienist	 Undertaking airborne asbestos monitoring, if and when required; 		
	Undertaking clearance inspections;		
	 Notifying their client with the results of any assessments and any observed non-conformances in a timely manner; and 		
	 Providing advice and recommendations arising from monitoring and/or inspections. 		

Role	Responsibility
	The Occupational Hygienist and the Environmental Consultant can be the same entity.

8.7 Material Tracking and Disposal Records

The Contractor will track the movement of all materials excavated from the site, all imported soil and offsite disposal of soil. This will include tracking of:

- Stockpile locations, with corresponding source of materials;
- Off-site disposal records for soils (trucking record and landfill dockets);
- Sources, volumes, dates and location of any imported materials; and
- Reported volume(s) of any soils imported to or exported from the site based on weighbridge records or other similar data provided by the supplier or waste receiver.

8.8 Minimising Cross Contamination

Prevention of cross contamination of soils during remediation work is vital to the successful remediation of the site. The following measures must be conducted by the Principal Contractor and / or Site Manager to manage the potential for cross contamination:

- Undertake all work in accordance with the RAP, including provisions for soil tracking and management of contaminated soils;
- Segregate soils with different contaminant profiles during handling works. This includes separation during excavation and loading into trucks and / or placement in clearly identified, separate, stockpiles, as directed by the Environmental Consultant;
- Bunding of stockpiles will need to be appropriately undertaken using hay bales / sandbags and if
 required conditioned with water, covered and / or lined with anchored impermeable plastic sheeting
 to prevent dust generation; and
- Use of suitable trucks for transport of soils within the site. Other trucks must be able to prevent spillage or leakage of soils during transport.

8.9 Natural Material

Contaminated natural material in and near BH6 was identified during previous investigations directly beneath the fill. As such, impacted natural soils will require remediation in the same way as the overlying fill outlined in Section 8.4.

9. Validation Assessment Criteria

The remediation works will be validated as meeting an acceptable standard for the proposed land use. The validation will be undertaken by visual inspection, field screening and analysis of samples.

This section provides Validation Assessment Criteria (VAC), which will be used to judge the success or otherwise of the remediation, and are based on a variety of considerations, including field observations and laboratory results.

This section also provides soil assessment criteria, which will be used in characterising soils as required to determine the VAC have been met and for off-site disposal.

9.1 Validation Assessment Criteria

9.1.1 VAC for Soils

The VAC corresponds to the SAC, as detailed in Section 9.2.

9.2 Soil Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current assessment is informed by the CSM (Section 5) which identified human receptors as the primary potential receptor to potential contamination on the site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, NEPC (2013).

The following guidelines were adopted for evaluation of the soil analysis results:

- NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure (as amended 2013); and
- CRC CARE (2011) Health Screening Levels for petroleum hydrocarbons in soil and groundwater, Technical report series No. 10.

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g., Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

The SAC comprises Health-based Investigation Levels (HIL), Health Screening Levels (HSL), Management Limits (ML) and Groundwater Investigation Levels (GIL). Given the sites current land use and proposed development with a basement excavation covering the developers work area, it is considered unlikely that soil contamination poses a risk to ecological receptors. Therefore, Environmental Investigation Levels (EIL) and Environmental Screening Levels (ESL) have not been considered in the current assessment.

Given the site's current and proposed commercial use, the adopted SAC are applied for commercial / industrial land use. It is noted that if the final development includes different land uses on portions of the site (such as a public open space) then a different and more conservative set of criteria would apply to those portions of the site.

9.3 Health Investigation and Screening Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HIL are applicable to assessing health risk arising via all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface.

HSL are applicable to selected petroleum compounds and fractions to assess the risk to human health via the inhalation pathway. HSL have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are appropriate for the assessment of contamination at the site. Given the proposed commercial land use the adopted HIL and HSL are:

- **HIL-D**: Commercial; and
- HSL-D for vapour intrusion and direct contact: Commercial.

The HSL adopted are predicted on the inputs summarised in Table 8, below.

Variable	Input	Rationale
Potential exposure pathway	Soil vapour intrusion (inhalation)/Direct contact*	With the potential for vapour intrusion into the new building, and direct contact with soils during construction and in public areas, both pathways are considered viable.
Soil Type	Sand	In the absence of laboratory particle analysis sand HSL have been adopted as an initial conservative screen; based on the variable fill and sandy soils present.
Depth to contamination	0 m to <1 m; associated with contaminated fill; and 2 m to < 4 m & 4 m+; associated with deeper fill	0 to <1 m for shallow fill soil; 2 to <4 m for fill soils; and 4 m+ for deep fill and natural soils.

Table 8: Inputs to the Derivation of HSL

* Developed by CRC CARE (2011)

Adopted soil HIL and HSL are shown on the following Tables 9 and 10.

Table 9: Adopted HIL and HSL (mg / kg)

	Contaminants	HIL - D	HSL-D Direct Contact	HSL-D⁴ Vapour Intrusion
	Arsenic	3,000	-	-
	Cadmium	900	-	-
	Chromium (VI)	3,600	-	-
	Copper	240,000	-	-
wetais	Lead	1,500	-	-
	Mercury (inorganic)	730	-	-
	Nickel	6,000	-	-
	Zinc	400,000	-	-
	Benzo(a)pyrene TEQ ¹	40	-	-
РАП	Naphthalene	-	11,000	NL
	Total PAH	4,000	-	-
TRH	C6 – C10 (less BTEX) [F1]	-	26,000	260
	>C10-C16 (less Naphthalene) [F2]	-	20,000	NL
	>C16-C34 [F3]	-	27,000	-
	>C34-C40 [F4]	-	38,000	-
BTEX	Benzene	-	430	3
	Toluene	-	99,000	NL
	Ethylbenzene	-	27,000	NL
	Xylenes	-	81,000	230
Phenol	Phenol	240,000	-	-
	Aldrin + Dieldrin	45	-	-
	Chlordane	530	-	-
	DDT+DDE+DDD	3,600	-	-
OCP	Endosulfan	2,000	-	-
001	Endrin	100	-	-
	Heptachlor	50	-	-
	НСВ	80	-	-
	Methoxychlor	2,500	-	-
OPP	Chlorpyrifos	2,000	-	-
	PCB ²	7	-	-

Notes to Table 9:

- 1. sum of carcinogenic PAH
- 2. non-dioxin-like PCBs only
- 3. NL not limiting
- 4. HSL-D for vapour intrusion, 0 m to <1 m, the most conservative values, has been adopted as an initial HSL for 2 to <4 m & 4 m+

Contaminants		HSL-Intrusive Maintenance Worker, (Direct Contact)	HSL-Intrusive Maintenance Worker, (Vapour Intrusion)
	C6 – C10 (less BTEX) [F1]	82,000	NL
TRH	>C10-C16 (less Naphthalene) [F2]	62,000	NL
	>C16-C34 [F3]	85,000	-
	>C34-C40 [F4]	120,000	-
BTEX	Benzene	1,100	77
	Toluene	120,000	NL
	Ethylbenzene	85,000	NL
	Xylenes	130,000	NL

Table 10: Adopted HSL for Intrusive Maintenance Worker (mg / kg unless otherwise indicated)

Note: NL – Not limiting

9.4 Management Limits - Petroleum Hydrocarbons

In addition to appropriate consideration and application of the HSL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

Management Limits (ML) to avoid or minimise these potential effects have been adopted in NEPC (2013) as interim Tier 1 guidance. Management Limits have been derived in NEPC (2013) for the same four petroleum fractions as the HSL (F1 to F4). The adopted ML, from Table 1B (7), Schedule B1 of NEPC (2013) are shown in the following Table 6. The following site-specific data and assumptions have been used to determine the Management Limits:

- The ML will apply to any depth within the soil profile;
- The ML for commercial land use applies; and
- A "coarse" soil texture has been adopted as a conservative parameter, based on the variable soil types encountered.

Table 11: Adopted ML (mg / kg)

Analyte		Management Limit
TRH	$C_{6}-C_{10}$ (F1) [#]	700
	>C ₁₀ -C ₁₆ (F2) #	1,000
	>C ₁₆ -C ₃₄ (F3)	3,500
	>C ₃₄ -C ₄₀ (F4)	10,000

Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

Management limits are applied after consideration of relevant HSL.

9.5 Asbestos

Bonded asbestos containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites; and
- Historical fill containing unsorted demolition materials.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and / or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

Based on the CSM a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g / kg (AS 4964⁹) has been adopted for this investigation/assessment as an initial screen.

If asbestos is identified in soil and off-disposal of asbestos-contaminated is not an option, then a detailed asbestos assessment against the criteria outlined in NEPC (2013) may be appropriate. This includes sampling and analysis of 10 L and 500 mL samples from sample locations. The HSL for

⁹ Australian Standard AS 4964-2004 Method for the qualitative identification of asbestos in bulk samples

commercial / industrial land use have been adopted for the proposed remediation and are shown in Table 12 below. In areas where a detailed asbestos investigation in accordance with NEPC (2013) has not been undertaken, any detection of asbestos will be considered to require remediation or further investigation.

T I I 40				• • • •	
1 able 12:	Health Screening	Levels for	Aspestos	Contamination	in Soil

Health Screening Level (where detailed asbestos conducted)			
Form of Asbestos	HSL (w/w)		
Bonded ACM	0.05%		
AF/FA (Friable Asbestos)	0.001%		
All forms	No visible asbestos for surface soil		

9.6 Classification for Off-Site Disposal

The following guidance applies to off-site disposal of soils:

- NSW EPA Waste Classification Guidelines 2014 (EPA, 2014); or
- A General or Specific Exemption under the *Protection of the Environment Operations (Waste) Regulation* 2014.

For contaminated filling or natural soils, waste classification for disposal to a licenced waste facility is required. Three main categories of waste apply (from lower to higher contaminant levels): General Solid Waste, Restricted Solid Waste and Hazardous Waste. Other waste categories also exist and can apply in conjunction with these three main categories, including Special Waste (including asbestos contaminated wastes), Putrescible General Solid Waste and Acid Sulphate Soil.

General Solid Waste comprises wastes with contaminant levels within the threshold levels CT1 and / or SCC1 and TCLP1 (as applicable). Restricted Solid Waste comprises wastes with contaminant levels within the CT2 and / or SCC2 and TCLP2 (as applicable) threshold levels. Hazardous Waste comprises wastes with contaminant levels above the SCC2 and TCLP2 (as applicable) threshold levels.

Liquids are classified as Liquid Waste, with no further assessment required to obtain a formal classification in accordance with EPA (2014). Depending on the source of the liquid, however, further testing can be required by the receiving facility to ensure they are legally able to receive it and have the capability to process it.

9.7 Contaminants with No Assessment Criteria

Where screening guidance is provided in NEPC (2013) for a specific analyte, the practical quantitation limit (PQL) will be used as the initial screening criteria.

If concentrations are recorded above the PQL, reference criteria will be sourced from other national and international guidance as relevant and used to determine the significance of the detected analyte.

Details of the reference criteria will be provided where used.

10. Sample Collection and Analysis Requirements

10.1 Soil Sampling Frequencies

The sampling frequency will depend on the volume or area to be assessed and the previous results. The following sampling frequencies will be used. These frequencies may be reduced for large volumes or areas.

10.1.1 Visual Inspections and Signs of Environmental Concern

All areas to be assessed and validated will first be subject to a visual inspection.

If any signs of environmental concern (e.g., odours, staining) are observed in the area/material being tested, targeted sampling will be conducted as required to assess the contamination potentially associated with the observed sign of concern. This may require additional samples to those required by the testing frequencies given below.

10.1.2 Validation of excavation

Small to medium excavations (base <500 m²):

- Base of excavation: 1 sample per 25-50 m² or part thereof. Where high local variation is expected, a minimum of 3 samples will be collected; and
- Sides of excavation: 1 sample per 10 m length or part thereof. Additional samples will be collected at depths of concern where there is more than one depth of concern, with a minimum of 1 sample per 1.5 m depth.

Large excavations (base \geq 500 m²):

- Base of excavation: sampling on a grid at a density in accordance with the EPA *Contaminated Sites: Sampling Design Guidelines* (1995) or a minimum of 10 samples. In sub-areas with any specific signs of concern, a higher sampling density may be required; and
- Sides of excavation: 1 sample per 20 m length or part thereof. Additional samples will be collected at depths of concern where there is more than one depth of concern.

10.1.3 Stockpiles

Samples will be collected from stockpiles at various depths to characterise the full depth of the stockpile.

Validation / assessment of stockpiled soils (note actual frequency will be determined based on volume, contamination risk and homogeneity of the material):

- Stockpiles ≤250 m³: 1 sample per 25 m³ or a minimum of 3 samples;
- Stockpiles 250 1,000 m³: 1 sample per 50-100 m³, or a minimum of 10 samples; and

• Stockpiles >1,000 m³: 1 sample per 100-250 m³.

A sampling regime will be determined by the Environmental Consultant/Validation Consultant in the event that a stockpile has a volume significantly greater than 1,000 m³.

Where contaminated soils are stored or treated on bare soils, the footprint of the stockpile requires validation following removal of the contaminated soils.

10.2 Field Methods

10.2.1 Soils

The following general sampling methodology is to be implemented for all sampling:

- Preparing record of samples, including sample date, location, description, signs of concern, and any field results;
- Sampling from surface or from the utilised plant using disposable sampling equipment or stainlesssteel hand tools;
- Decontaminating all re-useable sampling equipment prior to collecting each sample using a 3% solution of phosphate free detergent and distilled water;
- Transferring samples into a sealable plastic bag, and then placement in a second plastic bag (i.e. double bagging) (for asbestos analysis);
- Transferring samples into laboratory-prepared glass jars with Teflon-lined lid, and capping immediately (for chemical analytes);
- Labelling sample containers with individual and unique identification, including project number and sample number;
- Placing the plastic bags for asbestos into a sealed container for transport to the laboratory;
- Placing the glass jars for chemical analysis into a cooled, insulated and sealed container for transport to the laboratory; and
- Use of chain-of-custody documentation to ensure that sample tracking and custody can be crosschecked at any point in the transfer of samples from the field to hand-over to the laboratory.

10.2.2 Water

The following general sampling methodology is to be implemented for all sampling:

- Preparing record of samples, including sample date, location, description, signs of concern, and any field results;
- Decontaminating all re-useable sampling equipment prior to collecting each sample using a 3% solution of phosphate free detergent (Decon 90) and distilled water;
- Immediate placement of sample in laboratory prepared sample containers and capping;
- Labelling sample containers with individual and unique identification, including project number and sample number;

- Placing the samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use of chain-of-custody documentation to ensure that sample tracking and custody can be cross checked at any point in the transfer of samples from the field to hand-over to the laboratory.

10.3 Laboratory Analysis

Laboratory analysis of samples will be undertaken by laboratories with NATA accreditation for the analyte being tested and with appropriate QA / QC assessment to meet the requirements of Section 10.4.

It is anticipated that at least two laboratories will be employed to undertake the testing, a primary laboratory and secondary laboratory, which will analyse inter-laboratory replicate samples.

Samples will be analysed for the contaminants of concern identified for the sampling purpose. These contaminants will be identified based on available laboratory results from previous testing, field observations and the objective of the analysis.

10.4 Quality Control and Quality Assurance

QA / QC procedures will be adopted to ensure the repeatability and reliability of the results.

Field QA / QC testing will include the following:

- 5% sample inter-laboratory analysis, analysed for the same suite as primary sample;
- 5% sample intra-laboratory analysis, analysed for the same suite as primary sample;
- Rinsate samples (where re-useable sampling equipment is used), analysed for the suite of analytes analysed by the majority of the primary samples;
- Trip spike samples (one per batch of samples tested for BTEX where volatile contaminants are of concern); and
- Trip blank samples (one per batch of samples tested for TRH and BTEX where volatile contaminants are of concern).

The laboratory will undertake analysis in accordance with its accreditation, including in-house QA / QC procedures. These may include:

- Reagent blanks;
- Spike recovery analysis;
- Laboratory duplicate analysis;
- Analysis of control standards;
- Calibration standards and blanks; and
- Statistical analysis of QC data including control standards and recovery plots.

The quality control analytical results will be assessed using the following criteria:

- Sampling location rationale met the sampling objective;
- Standard operating procedures are followed;
- Appropriate QA / QC samples are collected/prepared and analysed;
- Samples are stored under secure, temperature-controlled conditions;
- Chain of custody documentation is employed for the handling, transport and delivery of samples to the selected laboratory;
- Conformance with specified holding times;
- Accuracy of spiked samples within the laboratory's acceptable range (typically 70-130% for inorganic contaminants and greater for some organic contaminants);
- Field and laboratory duplicates and replicate samples will have a precision average of +/- 30% relative percentage difference (RPD) for inorganic analytes and +/- 50% RPD for organic analytes; and
- Rinsate samples will show that the sampling equipment is free of introduced contaminants, i.e., the analytes show that the rinsate is within the normal range for deionised water.

11. Waste Classification Requirements

11.1 Waste Classification and Off-Site Disposal

All off-site disposal of soils will be undertaken in accordance with the regulation and guidelines outlined in Section 9.6.

Soil samples should be analysed for contaminants of potential concern as per Table 4.

In general, if required, one sample will be taken per 25 m^{3 -} 250 m³ depending on the total volume and homogeneity of the material with a minimum of three samples per stockpile. The following sampling rate is to be adopted:

- \leq 50 m³: Minimum of three samples;
- 50 m³ 250 m³: One sample per 50 m³, minimum of three samples; and
- > 250 m³: One sample per 250 m³, minimum of three samples.

No soils will leave the site without a formal waste classification.

All transport of waste and disposal of materials must be conducted in accordance with the requirements of the POEO Act. All licences and approvals required for disposal of the material will be obtained prior to removal of the materials from the site.

Removal of waste materials from the site shall only be carried out by a licensed contractor holding appropriate licence, consent and / or approvals to dispose of the waste materials according to the

assigned waste classification and the corresponding requirements outlined in the NSW EPA *Waste Classification Guidelines 2014*, and with the appropriate approvals obtained from the EPA, if required.

Details of all soils removed from the site (including Virgin Excavated Natural Material - VENM) shall be documented by the Contractor with copies of: weighbridge slips, trip tickets and consignment disposal confirmation (where appropriate) provided to the Environmental Consultant. A site log shall be maintained by the Contractor to track disposed loads against on-site origin.

Transport of spoil shall be via a clearly delineated, pre-defined haul route. The proposed waste transport route will be notified to the Council and truck dispatch shall be logged and recorded by the Contractor for each load leaving the Site.

11.2 QA / QC Analysis for Waste Classification

QA / QC testing for waste classification purposes include the following:

- Intra-laboratory duplicate samples for the full analytical suite of the primary sample at a rate of 5% of the primary sampling or a minimum of one sample per sampling day / source material; and
- One rinsate sample per sampling day (heavy metals, PAH and TRH/BTEX), if non-disposable sampling equipment is used.

11.3 Stockpiling of Contaminated Material

It is anticipated that stockpiles will be temporarily placed on the site during remediation works prior to any of the materials being loaded onto trucks for disposal. Any stockpiles placed on the site must be managed to minimise the risk of dust generation, erosion and leaching. The measures required to achieve this will depend on the stockpile material and the amount of time the stockpile remains on site. Measures should include:

- Restriction of the height of stockpiles (less than the height of the fence) to reduce dust generation;
- Implementation of control measures for sediment and erosion; and
- Temporary stockpiles should be kept moist by using water spray (where required).

11.4 Imported Materials

Materials imported to the site to backfill the site (where required) must be virgin excavated natural material (VENM), excavated natural material (ENM) or other certified materials (complying with a relevant Resource Recovery Order (RRO) as issued by the NSW EPA) such as topsoil (preferably not recycled or blended product), mulch (preferably not recycled or blended product) or quarry won products (such as gravel) from a reputable supplier.

The source site must provide reports showing compliance of the materials with any of the above. These reports must be provided to the environmental consultant for review and approval prior to importation of the material. If the reports do not meet the satisfaction of the Environmental Consultant, the source site may be rejected, or that additional analysis may be requested.

Upon receipt of the material a minimum of three check samples (per source site) of the imported material must be collected and analysed for: heavy metals, TRH, PAH, BTEX, OCP, OPP, PCB, phenols and asbestos (as a minimum).

In addition to VENM or RRO definitions, the analytical results must also meet the RAC provided in Section 11.

It is highly recommended that no recycled or blended product is used given the risk of asbestos containing materials in such products. Should such products be proposed for use, apart from being required to comply with an RRO, the Environmental Consultant will conduct a more rigorous validation process including:

- A visit to the source site;
- Thorough review of the reports provided confirming compliance with an RRO;
- Inspection of the imported product;
- Verification sampling of the imported product at a rate of at least 1 sample per 25 m³; and
- Analysis of the verification samples for the contaminants of concern (determine by the source and the information provided in the RRO compliance documentation). Asbestos will be analysed as a minimum for all incoming products.

QA / QC testing for imported materials must be undertaken in accordance with Section 11.2.

12. Validation Plan

12.1 Data Quality Objectives and Indicators

The validation assessment will be conducted in accordance with Data Quality Objectives (DQOs) and Quality Assurance / Quality Control (QA / QC) procedures to ensure the repeatability and reliability of the results.

The validation assessment will be planned in accordance with the following DQOs:

- State the Problem;
- Identify the Decision;
- Identify Inputs to the Decision;
- Define the Boundary of the Assessment;
- Develop a Decision Rule;
- Specify Acceptable Limits on Decision Errors; and

• Optimise the Design for Obtaining Data.

A checklist of Data Quality Indicators (DQI) in accordance with Appendix V of the NSW EPA *Contaminated Sites Guidelines for the NSW Site Auditor Scheme* (3rd edition) (2017) will be completed as part of the validation assessment. The DQIs are:

- Documentation completeness;
- Data completeness;
- Data comparability and representativeness; and
- Data precision and accuracy.

Based on a fulfilment of the DQOs and DQIs an assessment of the overall data quality will be presented in the validation report.

13. Validation Report

A Validation Report will be prepared by an Environmental Consultant in accordance with the relevant NSW EPA endorsed guidelines. The validation report should include: the remedial methods used (if required), assess the results of the post-remediation testing against the VAC (if required) and that all relevant licence conditions and approvals have been met.

The report will also document the waste classification and tracking of soils removed from the site and imported to the site.

The following documentary evidence will need to be reviewed by an Environmental Consultant as part of the validation process and where relevant noted or included in the validation report.

- Licenses: any licences and approvals required for the remediation works;
- **Transportation record:** this will comprise a record of all truckloads of soil entering or leaving the site, including truck identification (e.g., registration number), date, time, load characteristics (i.e., classification, on-site source, destination);
- Disposal dockets: for any soil materials disposed off-site, the contractor will supply records of: transportation records, spoil source, spoil disposal location, receipt provided by the receiving waste facility (where available), a record of receipt from the receiving site will be supplied (i.e., the receiving sites transportation records, including EPL for the disposal site and written confirmation that they can take the waste consignment);
- **Imported materials records:** records for any soil imported onto the site, including source site, classification reports, inspection records of soil upon receipt at site and transportation records;
- **Unexpected finds and contingency plans:** records relating to any unexpected finds and contingency plans implemented;
- Incident reports: any WHS Environmental Incidents which occur during the works will be documented and the PR and appropriate regulatory authority will be informed in accordance with regulatory requirements;

- Laboratory certificates: laboratory certificates and chain-of-custody documentation will be provided; and
- **Instructions:** letters / memos required to provide instruction or information to the Principal and Contractor.

13.1 Principal

The Principal will prepare / obtain the following documents:

• Any Licences and Approvals required for the Works which are not the responsibility of the Contractor to provide.

13.2 Principal Contractor

The Principal Contractor will prepare / obtain the following documents:

- Any **Licences and Approvals** required for the Works which are the responsibility of the Contractor to provide;
- **Excavation and Stockpiling Records:** these will record the source of any stockpiled material, the date of excavation and any issues of concern;
- **Transportation Record:** this will comprise a record of any truckloads of soil entering or leaving the site, including truck identification (e.g., registration number), date, time, load characteristics (i.e., classification, on-site source, destination);
- Tip dockets: these comprise dockets of receipt provided by the receiving waste facility;
- Survey drawings showing the extent of remedial excavations; and
- **Incident Reports:** any WHS or Environmental Incidents which occur during the works will be documented and the PR and appropriate regulatory authority will be informed in accordance with regulatory requirements.

Licences and approvals include the following (but not limited to):

- Notify the Council (consent authority) 30 days prior to commencement of remediation works. The client should check with the Council regarding this; and
- Removal of waste materials from the site shall only be carried out by a licensed contractor holding appropriate licence.

13.3 Environmental Consultant

The Environmental Consultant will prepare/ obtain the following documents:

- Waste classification reports, including records of sampling and analysis;
- Validation reports associated with imported materials; and
- Validation report, including records of inspections, sampling and analysis.

13.4 Occupational Hygienist

The Occupational Hygienist will prepare/obtain the following documents if asbestos contamination is encountered during excavation:

- Airborne asbestos monitoring records;
- Interim visual clearances of asbestos removal;
- A written final clearance certificate (to be incorporated as part of the final validation report) stating that:
 - o The assessor or competent person found no visible asbestos residue from asbestos removal work on the surface of the works area, or on the surface near the area where the work was carried out, and
 - o If air monitoring was carried out by the assessor or competent person as part of the clearance inspection the airborne asbestos fibre level was less than 0.01 asbestos fibres/mL.

14. Unexpected Finds Protocol

The unexpected finds protocol includes the following items:

- Potential asbestos contamination in fill / soil during excavation;
- Potential contaminants (general) in fill / soil during excavation; and
- Disposal of potentially hazardous waste.

Should monitoring and remediation of groundwater be required then a revised RAP assessing various options will be required to address groundwater contamination.

All site personnel will be inducted into their responsibilities under the Unexpected Finds Protocol (UFP). The UFP should be incorporated in the Construction Environment Management Plan (CEMP) as prepared by the appointed main contractor.

All site personnel are required to report to the Site Manager if the following signs of unexpected environmental concern are encountered:

- Presence of unexpected fibre cement;
- Petroleum, or other chemical odours;
- Unnatural staining;
- Buried drums or tanks; and / or
- Chemical spills.

Should signs of concern be observed, the Contractor will, as soon as practical:

 Place barricades around the affected area (the potential area of environmental concern - PAEC) and cease work in that area; • Notify the client of the occurrence;

Douglas Partners

entechnics | Environment | Groundwater

- Notify any of the authorities that the Contractor is legally required to notify (e.g. EPA, Council);
- Notify the Environmental Consultant;
- The client will notify any of the authorities which the Principal is legally required to notify (e.g. EPA, Council); and
- Following the immediate response in the UFP, one of the following contingency plans may be implemented.

14.1 General

The general procedures in the event of an unexpected find are outlined below:

- 1. Cease work at that location and contact the client;
- 2. Place barricades around the affected area (the potential area of environmental concern PAEC);
- 3. Notify authorities needed to obtain emergency response for any health or environmental concerns, if required;
- 4. Notify any of the authorities that the contractor is legally required to notify (e.g. EPA, Council);
- 5. Notify the Environmental Consultant;
- 6. The Environmental Consultant will inspect the find and if deemed necessary, design and implement an investigation to assess the risk of hazard:
 - If no hazard is identified, the Environmental Consultant will advise the client who will instruct the contractor to remove the barricades and continue works in that area;
 - If a potential hazard is identified, the Environmental Consultant will outline a procedure to remediate and / or manage the find, which may form an addendum to the RAP; and
 - The contractor will undertake the remediation / management works which will be validated by the Environmental Consultant generally in accordance with the RAP, or any other procedural document produced in response to the find.

14.2 Asbestos

The following protocol has been established in the event of an unexpected asbestos find:

 Upon discovery of suspected asbestos containing material, the site manager is to be notified and the affected area closed off using barrier tape and warning signs. Warning signs shall be specific to asbestos hazards and shall comply with the Australian Standard 1319-1994 - Safety Signs for the occupational environment;

- 2. An occupational hygienist or Environmental Consultant with appropriate competency to NEPC (2013) is to be notified to inspect the area and confirm the presence of asbestos (and type of asbestos) and determine extent of investigation and/or remediation works to be undertaken. A report detailing this information will be compiled by the occupational hygienist or Environmental Consultant and provided to the site manager;
- 3. Should asbestos impacted soils require off-site disposal, the impacted soil will be stockpiled for waste classification purposes (including sampling and chemical analysis) and will be disposed of, as a minimum, as asbestos waste at an appropriately licensed solid waste landfill site. In dry and windy conditions, the stockpile will be lightly wetted and covered with plastic sheet whilst awaiting disposal;
- All work associated with asbestos in soil will be undertaken by a contractor holding a class AS1 Licence and all workers working in the asbestos impacted zone must meet the following minimum PPE requirement (unless otherwise advised by the hygienist);
 - Steel-capped lace-less boots;
 - Hard hat meeting AS1801-1981 and AS/NZS 1801:1997/Amdt 1:1999 requirements;
 - High visibility clothing;
 - Half-face P2 rated respirator or similar;
 - Disposable full-length body coveralls with elasticated hood and cuffs (Tyvek suit or equivalent); and
 - Gloves.
- 5. Monitoring for airborne asbestos fibres is to be carried out during the soil excavation, if deemed necessary by the Occupational Hygienist. Asbestos air monitoring will be undertaken in accordance with *Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition* [NOHSC: 3003 (2005)] and sampling density and locations will be determined by the Occupational Hygienist. All filters will be submitted to a NATA accredited laboratory for analysis. Air samples will be collected from the breathing zone of a person, over a minimum of four hours duration;
- 6. At the completion of the excavation, a clearance inspection is to be carried out and written certification is to be provided by the occupational hygienist that the area is safe to be accessed and worked. Clearance will include soil samples and asbestos analysis;
- 7. Details of the incident are to be recorded in the site record system; and
- 8. The area may be reopened for further excavation or construction work.

14.3 Hazardous Waste

This plan caters for the storage, treatment and disposal of excavated spoil which fails to meet the criteria for direct disposal to a landfill (i.e., Hazardous Waste). Any suspected Hazardous Waste materials should have the classification confirmed by the Environmental Consultant, including additional sampling and analysis as appropriate, prior to implementing this contingency plan.

Hazardous Waste will be handled as follows:

- Materials of the same spoil category/ contamination issue will be carefully excavated and placed as separate stockpiles at demarcated and contained locations. The categorisation would be done based on on-site observations and the contaminant exceedances detected;
- Stockpiles of excavated materials will be appropriately bunded with hay bales / sandbags and covered with anchored geotextile or impermeable plastic sheeting, or alternatively placed in an appropriate container e.g., waste skip, with appropriate cover. Materials considered to have the potential to produce contaminated leachate will be stockpiled in an area with an appropriate leachate collection system;
- Sampling and analysis of segregated stockpiles will be conducted to determine the concentrations of the target parameters in the excavated materials (e.g., leachability of the contaminants of concern, treatability studies);
- Should the sampling and testing confirm the Hazardous Waste category, an off-site treatment / disposal facility will be considered;
- If the material is to be disposed of at a specific landfill site, appropriate applications will be made to the EPA. It is foreseen that treatment and management of Hazardous Wastes prior to off-site disposal would be conducted by a specialised contractor. Agreement as to the appropriateness of the treatment and disposal method for materials must be obtained from the EPA, and disposal consent must be sought from the Hazardous Waste Regulation Unit of the EPA prior to the removal of such wastes from the Site; and
- An appropriately licensed Hazardous Waste remediation contractor will be appointed to manage the waste and remove from site in accordance with the methodology agreed with the EPA.

15. Site Management Plan

15.1 General

The Contractors will undertake the work with due regard to the minimisation of environmental effects and to meet regulatory and statutory requirements.

The Contractors should have in place an over-arching construction environmental management plan that incorporates this RAP so that work on the Site complies with, but not limited to, the following:

- Protection of the Environment Operations Act 1997;
- Contaminated Land Management Act 1997;
- Work Health and Safety Act 2016; and
- Work Health and Safety Regulation 2017.

The following general measures outlined below should be implemented during the remediation phase. All personnel should be made familiar with the following section prior to the commencement of site works as required.

15.2 Vibration Control

The use of any plant and/or machinery should not cause unacceptable vibrations to nearby properties and should meet Council requirements.

15.3 Dust Control

Dust emissions should be confined within the Site boundary. The following dust control procedures will be employed to comply with this requirement as necessary:

- Erection of dust screens around the perimeter of the Site;
- Securely covering all loads entering or exiting the Site;
- Use of water sprays across the Site to suppress dust;
- Covering of all stockpiles of contaminated soil remaining onsite more than 48 hours;
- Dust monitoring as may be required by the Council DA consent; and
- Keeping excavation and stockpile surfaces moist.

15.4 Odour Control

No odours should be detected at any boundary of the Site during remediation works by an authorised Council Officer relying solely on sense of smell. The following procedures should be employed to comply with this requirement as required:

- Use of appropriate covering techniques such as plastic sheeting, polythene or geotextile membranes to cover excavation faces or stockpiles;
- Fine spray of water and / or hydrocarbon mitigating agent on the impacted areas / materials;
- The use of water spray, as and when appropriate, to eliminate wind-blown dust;
- Use of sprays or sprinklers on stockpiles or loads to lightly condition the material;
- Restriction of stockpile heights to 5 m above surrounding site level. If required, restrict uncovered stockpiles to appropriate sizes to minimise odour generation;
- Ceasing works during periods of inclement weather such as high winds or heavy rain;
- Regular checking of the fugitive dust and odour issues to ensure compliance. Undertake immediate remediation measures to rectify any cases of excessive dust or odour (e.g., use of misting sprays or odour masking agent); and
- Adequate maintenance of equipment and machinery to minimise exhaust emissions.

15.5 Disposal of Waters

Any water requiring disposal will be assessed and managed as follows:

- Assessment of water quality by the Environmental Consultant. This will include a review of potential for the water to be impacted by various contaminants, possible disposal options, and determination of a suitable sampling and analysis program. Analysis may include total suspended solids (TSS) and / or turbidity, pH, filterable iron, other metals, PAH, TRH, BTEXN, phenols and VOC. The Environmental Consultant will provide written advice of the results to the PR and Contractor, including comments on potential disposal options.
- Determination of the appropriate disposal method by the PR based on the above results. Treatment may be required prior to disposal. In general, disposal options for liquids include:
 - On-site absorption. This option is generally suitable for water with contaminants levels at background quality for the Site, and comprises discharge of water onto the ground surface in an area where it will be absorbed into the underlying soils and groundwater. TSS would not be an issue of concern for this method of disposal;
 - o Disposal to stormwater. This option is suitable for uncontaminated waters, with low turbidity. All water to be disposed to stormwater needs to meet the requirements of the owner of the stormwater system, which is City of Sydney Council;
 - o Disposal to sewer under a Trade Waste Agreement. This method of disposal would require a Trade Waste Agreement with Sydney Water;
 - o Disposal as a liquid waste to a licensed liquid waste contractor in accordance with the POEO Act, 1997. This method is likely to be costly, however, it allows for off-site treatment and is therefore suitable for wastes with high levels of contaminants; and
 - o On-site treatment followed by disposal by one of the above methods. If direct disposal by one of the above methods is considered unsuitable due to the water quality or cost, on-site treatment could be conducted prior to disposal. On-site treatment may include for example removal of suspended solids and pH adjustment which are standard requirements for construction sites water prior to disposal to stormwater or sewer.
- Disposal of the water in accordance with the POEO Act. Record of the disposal will be kept by the Contractor and provided to the PR and Environmental Consultant.

If treatment of contaminants is required by City of Sydney Council (stormwater discharge) or Sydney Water (sewer discharge), a remediation contractor can be engaged to devise a concept and/or detailed design of the treatment system. This would generally involve the following (or similar):

- Settlement tanks, to remove suspended solids from the dewatered excavation;
- Oil-water separator vessels, to recover floating product and separate sinking product (if any);
- Sand filtration, to remove fine sediment from the water stream,
- Aeration, to remove BOD; and
- Granular activated carbon (GAC) filtration and resultant filtration to adsorb contaminants.

Routine validation sampling is required to assess the effectiveness of the treatment process. The validation sampling and testing should be carried out by a qualified environmental consultant.

15.6 Stormwater Management and Control

As necessary, the remediation contractor shall take appropriate measures to ensure that potentially contaminated water does not leave the Site. Stormwater management for the duration of the remediation works shall be utilised and monitored to minimise stormwater flow into adjacent waterways.

The remediation contractor should refer to the *Managing Urban Stormwater:* Soils and construction - *Volume 1 (4th edition)* guidelines or commonly known as the 'Blue Book' as part of the stormwater management plan.

15.7 Occupational Health and Safety

The Contractors shall develop a site emergency response plan (ERP) and occupational health and safety plan (OHSP). This will ensure the safety of the personnel working on site, given any likely incident/accident which may occur. The OHSP and ERP should include emergency phone numbers and details of local emergency facilities.

Appropriate fencing and signage should be installed around and within the Site to prevent unauthorised access to the Site, restricted access remediation areas and / or deep excavations.

All site personnel should be required to wear the following personnel protective equipment (PPE):

- Steel-capped boots;
- High visibility clothing; and
- Hard hat meeting AS1801-1981 requirements.

The following additional PPE will be worn, as required:

- Hearing protection meeting AS1270-1988 requirements when working around machinery or plant equipment if noise levels exceed exposure standards;
- Safety glasses or safety goggles with side shields meeting AS1337-1992 requirements (as necessary, particularly during any demolition);
- Disposable coveralls (if necessary) to prevent contact with splashed contaminated soil, materials or water;
- Nitrile work gloves meeting AS2161-1978 requirements or heavy-duty gauntlet gloves; and
- Any additional protection identified by the Environmental Consultant.

Where the site personnel are required to work in areas of potential contact with asbestos, the following special PPE (in addition to the standard PPE) should be worn during works involving the handling and / or removal of soils impacted by asbestos:

- Disposable coveralls (rated type 5, cat 3 or equivalent);
- Half-face P1/P2 respirator or equivalent;
- Gloves; and
- Safety footwear which should be laceless.

Excavation, handling, stockpiling, transport etc. of materials containing asbestos should be undertaken by a licensed contractor in accordance with relevant regulatory requirements.

15.8 Hours of Operation

All remediation work should be conducted within the hours specified by the City of Ryde.

15.9 Contingency Plans to Respond to Site Incidents

The key to effective management of incidents is the timely action taken before any situation reaches a reportable or critical level. Therefore, surveillance activities are extremely important, and should be conducted for the measures prescribed herein and any other measures as seen appropriate by the Principal's representative. During work activities on the Site, the following inspection or preventative actions must be performed by the main Contractor and carefully documented:

- Regular inspection of works;
- Completion of routine environmental checklists and follow-up of non-compliance situations;
- Maintenance of supervision on-site; and
- An induction process for site personnel involved in the remediation works that includes relevant information on environmental requirements; and ensure that all site personnel are familiar with the Site emergency procedures.

The Contractor's site foreman should be responsible for initiating an immediate emergency response using the resources available on the Site. Where external assistance is required, the relevant emergency services should be contacted. A list containing contact details for key personnel who may be involved in an environmental emergency response should be completed and be made available to site workers.

15.10 Identify Regulatory Compliance

The work should be undertaken with all due regard to the minimisation of environmental effects and to meet all statutory requirements, including, inter alia, provisions specified in:

- Protection of the Environment Operations Act 1997;
- Contaminated Land Management Act 1997;
- Dangerous Goods Act 2008;
- Work Health and Safety Act 2016;
- Work Health and Safety Regulation 2017; and
- DUAP NSW EPA (1998) State Environmental Planning Policy No. 55 (SEPP 55).

15.11 Community Engagement

The Contractor must affix a sign to the main entrance of the Site displaying contact details of the Contractor, Environmental Consultant and Principal Contractor. Each party must keep a log of any communications received by the public. A summary of any communications received will be included in the validation report.

15.12 Contact Details

The following table provides a list of personnel and contact details relevant to the remediation. The list should be filled in as relevant personnel are appointed to the remediation project.

Role	Personnel / Contact	Contact Details (phone)
Principal	Atlassian Pt Ltd	(02) 9262 1443
Principal's Representative	Avenor Pty Ltd	(02) 9152 8668
Site Manager	ТВА	ТВА
Environmental Consultant	Douglas Partners Pty Ltd	(02) 9809 0666
Site Auditor	Harwood Environmental Consultants Pty Ltd	0438 200 055
Regulator	NSW EPA (pollution line)	131 555 or (02) 9995 5555
Regulator	NSW EPA (general enquiries)	131 555 or (02) 9995 5555
Consent Authority	City of Sydney Council	(02) 9265 9333
Utility Provider	Sydney Water	<u>13 20 92</u>
Utility Provider	Ausgrid	13 13 88
Utility Provider	Jemena	<u>131 909</u>

Table 12: Contact Details

Notes to table: Table to be completed when the contact details are known.

16. Conclusions

It is considered that the Site can be rendered suitable for the proposed development subject to the following:

- Completion and findings of the data gap analysis;
- Completion of suitable site validation according to the requirements of the RAP;
- Appropriate management of off-site disposal of contaminated and non-contaminated fill / soil in accordance with the RAP; and

• Proper implementation of unexpected finds protocols during basement excavation and other civil works on the Site.

Significant contamination identified during the data gap analysis and/or addressing unexpected finds may warrant an amendment or addendum to this RAP such that appropriate actions are managed and documented.

17. Glossary of Key Terms

Term	Definition
	2 Lee Street, Haymarket
Adina Hotel	The Former Parcels Post Office
	The Adina Apartment Hotel Sydney Central
Atlassian Central	The Atlassian tower building (building only)
Atlassian Central development	The whole Atlassian development within the Atlassian Site including the tower and public domain works.
Atlassian Site	8 - 10 Lee Street, Haymarket
Central Sydney	Land identified as Central Sydney under the Sydney LEP 2012 and includes Sydney's Central Business District (CBD)
Central SSP	Central Station State Significant Precinct
Central Walk West	The future western pedestrian entry to the new 19 metre-wide underground concourse customers to suburban rail and Sydney Metro platforms.
Devonshire Tunnel	The pedestrian and cycle tunnel running between Chalmers Street and Lee Street
"Dexus / Frasers Site"	14 - 30 Lee Street, Haymarket. Adjoining land immediately to the south currently comprising three 8-storey commercial buildings
Habitat Level 1	Flexibly ventilated workspace areas
Link Zone	The publicly accessible land within the Site.
Sub-precinct	Western Gateway Sub-precinct
The Project	Commercial and hotel development above the Former Inwards Parcel Shed at 8 - 10 Lee Street, Haymarket

18. Limitations

Douglas Partners (DP) has prepared this report for the Site at 8-10 Lee Street, Haymarket in accordance with DP's proposal SYD190190.P.003 dated 4 February 2020 and acceptance received from Avenor Pty Ltd on behalf of Atlassian Pty Ltd. The work was carried out under agreed terms of engagement between DP and Atlassian Pty Ltd. This report is provided for the exclusive use of Atlassian Pty Ltd only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

DP's advice is based upon the conditions encountered during the investigations undertaken as referenced in this RAP. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the Site between and beyond the sampling and/or testing locations. The advice may also be limited by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the (geotechnical/environmental/groundwater) components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

Notes About this Report

and Drawings

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

CLIENT: Vertical First Pty Ltd		
OFFICE: Sydney	DRAWN BY: HDS/BZ	
SCALE: 1:500 @ A3	DATE: 24.07.2020	

TITLE: Test Location Plan Proposed Commercial Development 8-10 Lee Street, HAYMARKET

Previous geotechnical borehole (DP Project 27282B, dated 1999)
 Environmental borehole - Lower Ground Floor

- (DP Report 86767.01.R.001.DftB, dated 29 August 2019)
- + Geotechnical & environmental borehole Lower Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Geotechnical & environmental borehole Upper Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Environmental borehole
- Geotechnical & environmental borehole
- 🖶 Geotechnical borehole
- P Standpipe piezometer
- Approximate site boundary
- Geotechnical Cross Section A-A'

PROJECT No: 86767.00

DRAWING No:

1

REVISION:

0

3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

CLIENT: Vertical First Pty Ltd		
OFFICE: Sydney	DRAWN BY: BZ	
SCALE: 1:500 @ A3	DATE: 20.08.2020	

TITLE: SAC Exceedances **Proposed Commercial Development** 8-10 Lee Street, HAYMARKET

Locality Plan

Previous geotechnical borehole (DP Project 27282B, dated 1999) Environmental borehole - Lower Ground Floor (DP Report 86767.01.R.001.DftB, dated 29 August 2019)

- + Geotechnical & environmental borehole Lower Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Geotechnical & environmental borehole Upper Ground Floor
 - (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- ▲ Environmental borehole

LEGEND

- Geotechnical & environmental borehole
- 🖶 Geotechnical borehole
- P Standpipe piezometer
- Conceptual area of remediation (subject to additional data gap assessment)
- Approximate site boundary
- HIL exceedance marked in green text GIL exceedance marked in blue text ML exceedance marked in blue text

PROJECT No:	86767.06
DRAWING No:	3
REVISION:	0

3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

	CLIENT: Vertical First Pty Ltd		
OFFICE: Sydney		DRAWN BY: BZ	
	SCALE: 1:500 @ A3	DATE: 11.08.2020	

TITLE: Test Location Plan **Proposed Commercial Development** 8-10 Lee Street, HAYMARKET

Environmental borehole - Lower Ground Floor

- (DP Report 86767.01.R.001.DftB, dated 29 August 2019)
- + Geotechnical & environmental borehole Lower Ground Floor
 - (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Environmental borehole
- 5m step out test pits from BH3 or BH6
- ▲ 10m step out test pits from BH3 or BH6

Data gap investigation locations near the cool rooms

- Conceptual area of remediation (subject to additional data gap assessment)
- Approximate site boundary

$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

PROJECT No: 86767.00

DRAWING No: **REVISION:**

4 0

NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Facsimile +61 2 8297 7299 www.bvn.com.au

TEL +61 2 9699 7182

TTW TEL +612 9439 7288

ISP Design TEL +1 305 278 1565

Avenor TEL +61 2 9152 8668 1906024

SSDA

2

NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

	/ / 		LEVEL T02∽ 44.960m
			LEVEL T01 41 400m PLANNING ENVELOPE - L <u>OWER BOUND</u> 40.050m
		_	<u>CORE</u> PLANT LEVEL 02 37.000m
			<u>CORE</u> PLANT LEVEL 01 33.500m
			OSD_LEVEL ▽ 30.000m
			<u>MEZZANINE</u>
/ARD			UP <u>PER</u> G <u>ROUND</u> 21.000m
			DEVONSHIRE STREET TUNNEL T6.420m LOWER GROUND T5.300m
			ADINA BASEMENT 13.386m
			<u>BASEMENT 1</u>
			<u>BASEMENT 2</u> 5.000m
PLAN			18/09/2020 12:59:43 PM
	GRAPHIC SCALE	5000	
JECT LASSIAN CENTRAL .8-10 LEE STREET, HAYMARKET JECT NUMBER	SCALE 1 : 100@A1 		BASEMENT/PODIUM EAST-WEST SECTION 1 DOCUMENT NUMBER ISSUE
)6024	SSDA		DA-11D-XXX-03 2

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

INTELLECTUAL PROPERTY COPYRIGHT BWN ARCHITECTURE PTY LIMITED. UNLESS OTHERWISE AGREED IN WRITINGALL RIGHTS TO THIS DOCUMENT ARE SUBJECT TO PAYMENT IN FULL OF ALL BWN CHARGES;THIS DOCUMENT MAY ONLY BE USED FOR THE EXPRESS PURPOSE AND PROJECT FOR WHICH IT HAS BEEN CREATED AND DELIVERED, AS NOTIFIED IN WRITING BY BVI;AND THIS DOCUMENT MAY NOT BE OTHERWISE USED, OR COPIED. ANY UNAUTHORISED USE OF THIS DOCUMENT IS AT THE USER'S SOLE RISK AND WITHOUT LIMITING BVN'S RIGHTS THE USER RELEASES AND INDEMNIFIES BVN FROM AND AGAINST ALL LOSS SO ARISING.

NOTE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING ISSUE DATE FOR 28.08.20 WIP SSDA FOR CLIENT REVIEW 18.09.20 DRAFT SSDA

		1 DA-11D-XXX-03			1 DA-11D-XXX-06		
							LEVEL T02 44.960m
						 	LEVEL <u>T01</u> ~ PLANNING ENVELOPE -
							<u>LOWER BOUND</u> ~ 40.050m
							CORE PLANT LEVEL 02 🖂
							37.000m
						SITE BO	CORE PLANT LEVEL 01
						i	33.500m
ADINA HOTEL BEYOND							OS <u>D</u> LEVEL
							30.000m
				+			<u>MEZZANINE</u> \gtrsim 26.000m
		PAINTED ST	EEL FLAT BAR BALUSTRADE			ADE GLASS BAL <mark>U</mark> STRA	ADE
			SKYLIGHTS				21.00011
EXISTING BRICK WALL			OFF-FORM CONCRETE SOFFIT				DEVONSHIRE STREET
							$ \frac{\text{TUNNEL}}{16.420 \text{m}} \bigtriangledown$
		EXISTING AND					ADINA BASEMENT
		<u> </u>			RAMP UP TO LEE STREET		
							BASEMENT 1 = BASEMENT 1 = 10.300 m
e contraction and the second and the	The second and the second s	ADINA RETAIL STORE		LOADING DOCK			
, , , , , , , , , , , , , , , , , , ,	,	۲		× × × × × × × × × × × × × × × × × × ×			BASEMENT 2
		1 DA-11D-XXX-03			1 DA-11D-XXX-06		
	ARCHITECT	STRUCTURAL & FACADE ENGINEER Eckersley O'Callaghan	TOWN PLANNER Urbis	CLIENT	KEY PLAN		18/09/2020 12:59:50 PM
	TEL +61 2 8297 7200 ARCHITECT SHOP Architects	TEL +1 415 813 3810 MEP ENGINEER & VT CONSULTANT LCI TEL +61 2 0157 0570	TEL +61 2 8233 9900 BCA/DDA CONSULTANT Blackett Maguire + Goldsmith	ATLASSIAN			-
	CLIMATE CONSULTANT Transsolar TEL +49 711 679 76 0	ACOUSTIC CONSULTANT STANTEC TEL +61 2 8484 7000	FIRE ENGINEER Norman Disney & Young TEL +61 2 9928 6800		PROJECT ATLASSIAN CENTRAL No.8-10 LEE STREET. HAYMARKFT	<u>5000</u> SCALE 1 : 100@A1	BASEMENT/PODIUM
	LANDSCAPE ARCHITECT ASPECT Studios TEL +61 2 9699 7182	STRUCTURAL & CIVIL ENGINEER TTW TEL +612 9439 7288	LIGHTING CONSULTANT ISP Design TEL +1 305 278 1565	PROJECT MANAGER Avenor TEL +61 2 9152 8668	PROJECT NUMBER 1906024	STATUS SSDA	DOCUMENT NUMBER ISSUE

TEL +1 212 889 9005
CLIMATE CONSULTANT
Transsolar TEL +49 711 679 76 0
LANDSCAPE ARCHITECT
ASPECT Studios

ASPECT Studios	
TEL +61 2 9699 7182	

MEP ENGINEER & VT CONSULTANT
LCI
TEL +61 2 9157 0570
ACOUSTIC CONSULTANT
STANTEC
TEL +61 2 8484 7000
STRUCTURAL & CIVIL ENGINEER
TTW
TEL +612 9439 7288

TOWN	N PLANNER
Urbis TEL	; +61 2 8233 9900
BCA/[DDA CONSULTANT
Black TEL	kett Maguire + Goldsmith +61 2 9211 7777
FIRE	ENGINEER
Norm	nan Disney & Young +61 2 9928 6800
LIGHT	TING CONSULTANT
ISP [Tel	Design +1 305 278 1565

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 INIOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

NOTE

CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING

ISSUE DATE FOR 28.08.20 WIP SSDA FOR CLIENT REVIEW 18.09.20 DRAFT SSDA

	NEW BALUSTRADE 		 TO UPPER GROUND		HERITAGE WALL		<u>UPPER GROUND</u> 21.000m	- 🏹
	RL 16.786 m	DIVE RAN (FIRE SHUTTE SHOWN			NEW RETAINING WALL INTERFACE WITH EXISTING WALL INC. UNDERPINNING TO BE DEVELOPED		HERITAGE WALL (BEYOND) DEVONSHIRE STREET TUNNEL 16.420m XTG. GROUND LEVEL LOWER GROUND 15.300m ADINA BASEMENT 13.386m	
F EXISTING IOLISHED)	RAMP UP TO STREET (BEYOND)	TRAFFIC ISLAND WITH BOOM GATES	WALL WITH FIRE S	SHUTTER			<u>BASEMENT 1</u> 10.300m	
	ARCHITECT BVN TEL +61 2 8297 7200 ARCHITECT SHOP Architects TEL +1 212 889 9005 CLIMATE CONSULTANT Transsolar TEL +49 711 679 76 0 LANDSCAPE ARCHITECT ASPECT Studios TEL +61 2 9699 7182	STRUCTURAL & FACADE ENGINEER Eckersley O'Callaghan TEL +1 415 813 3810 MEP ENGINEER & VT CONSULTANT LCI TEL +61 2 9157 0570 ACOUSTIC CONSULTANT STANTEC TEL +61 2 8484 7000 STRUCTURAL & CIVIL ENGINEER TTW TEL +612 9439 7288	TOWN PLANNER Urbis TEL +61 2 8233 9900 BCA/DDA CONSULTANT Blackett Maguire + Goldsmith TEL +61 2 9211 7777 FIRE ENGINEER Norman Disney & Young TEL +61 2 9928 6800 LIGHTING CONSULTANT ISP Design TEL +1 305 278 1565	CLIENT CLIENT ATLASSIAN PROJECT MANAGER Avenor TEL +61 2 9152 8668	KEY PLAN PROJECT ATLASSIAN CENTRAL No.8-10 LEE STREET, HAYMARKET PROJECT NUMBER 1906024	GRAPHIC SCALE 0 1000 SCALE 1:50@A1 STATUS SSDA	DRAWING DRAWING DRAWING DRAWING DOCUMENT NUMBER DA-11D-XXX-05	18/09/2020 12:59:56 F T ENTRY ISSUE 2

NEW BALUSTRADE 	STRUCTURE OF NEW RAM	P TO UPPER GROUND			<u>UPPER GROUND</u> 21.000m	_~
NEW WALL				NEW RETAINING WALL INTERFACE WITH EXISTING WALL INC. UNDERPINNING TO BE DEVELOPED	HERITAGE WALL (BEYOND)	
RL 16.786 m	DIVE R (FIRE SHUT SHOW				DEVONSHIRE STREET TUNNEL 16.420m EXTG. GROUND LEVEL LOWER GROUND 15.300m	_~
					<u>ADINA BASEMENT</u> 13.386m	_~
					<u>BASEMENT 1</u> 10.300m	_~
RAMP UP TO STREET (BEYOND)	TRAFFIC ISLAND WITH BOOM GATES	WALL WITH FIRE SH	IUTTER			
ARCHITECT BVN TEL +61 2 8297 7200 ARCHITECT SHOP Architects TEL +1 212 889 0005	STRUCTURAL & FACADE ENGINEER Eckersley O'Callaghan TEL +1 415 813 3810 MEP ENGINEER & VT CONSULTANT LCI TEL +61 2 9157 0570	TOWN PLANNER Urbis TEL +61 2 8233 9900 BCA/DDA CONSULTANT Blackett Maguire + Goldsmith TEL +61 2 0211 7777	CLIENT CLIENT ATLASSIAN	KEY PLAN		18/09/2020 12:5

NSW ARCHITECTS REGISTRATION BOARD / NOMINATED ARCHITECTS 6501 ABBIE GALVIN 9356 NINOTSCHKA TITCHKOSKY 7115 JULIAN ASHTON 7053 MATTHEW BLAIR 7151 PHILLIP ROSSINGTON 4937 JAMES GROSE

Telephone +61 2 8297 7200 Facsimile +61 2 8297 7299 www.bvn.com.au

INTELLECTUAL PROPERTY COPYRIGHT BWN ARCHITECTURE PTY LIMITED. UNLESS OTHERWISE AGREED IN WRITINGALL RIGHTS TO THIS DOCUMENT ARE SUBJECT TO PAYMENT IN FULL OF ALL BWN CHARGES;THIS DOCUMENT MAY ONLY BE USED FOR THE EXPRESS PURPOSE AND PROJECT FOR WHICH IT HAS BEEN CREATED AND DELIVERED, AS NOTIFIED IN WRITING BY BVIYAND THIS DOCUMENT MAY NOT BE OTHERWISE USED, OR COPIED. ANY UNAUTHORISED USE OF THIS DOCUMENT IS AT THE USER'S SOLE RISK AND WITHOUT LIMITING BVN'S RIGHTS THE USER RELEASES AND INDEMNIFIES BVN FROM AND AGAINST ALL LOSS SO ARISING.

NOTE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK OR PREPARATION OF SHOP DRAWINGS. DO NOT SCALE THIS DRAWING ISSUE DATE FOR 28.08.20 WIP SSDA FOR CLIENT REVIEW 18.09.20 DRAFT SSDA

							$\underline{LEVEL T02}_{44.960m} \bigtriangledown$
<u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u> ,							PLANNING ENVELOPE - LOWER BOUND 40.050m
			1 1 11D-XXX-01 DA-11D-XXX-04				CORE PLANT LEVEL 02 37.000m
	LOPER ZONE		I 				CORE PLANT LEVEL 01 33.500m
				N SEE DRAWING	Z0-XXX-		OSD L <u>EVEL</u> 30.000m
		METAL FASCIA GREEN ROOF		FOR CONTINUATION			MEZZANINE 26.000m
		EXISTING HERITAGE SHED TIMBER STRUCTURE	ER GROUND LINK ZONE				UPPER GROUND 21.000m
		TUNNEL ENTRY LEVEL					DEVONSHIRE STREET TUNNEL = 16.420m $ LOWER GROUND = 15.300m$
							ADINA BASEMENT
		CYCLE ACCESS	STAIR				BASEMENT 1 10.300m
	LINK ZONE ROA	ADWAY			оск		BASEMENT 2
		DA	1 1 A-11D-XXX-0 DA-11D-XXX-04				5.000m
							18/09/2020 1:00:11 PM
ARCHITECT BVN		STRUCTURAL & FACADE ENGINEER Eckersley O'Callaghan	TOWN PLANNER Urbis	CLIENT	KEY PLAN		DRAWING
TEL +61 2 8297 7200 ARCHITECT		TEL +1 415 813 3810 MEP ENGINEER & VT CONSULTANT	TEL +61 2 8233 9900 BCA/DDA CONSULTANT	_ ATLASSIAN		GRAPHIC SCALE	
SHOP Architects TEL +1 212 889 9005		LCI TEL +61 2 9157 0570 ACOUSTIC CONSULTANT	Blackett Maguire + Goldsmith TEL +61 2 9211 7777	_	PROJECT	 0 2000 5000 SCALE	
Transsolar TEL +49 711 679 76 0		STANTEC TEL +61 2 8484 7000	Norman Disney & Young TEL +61 2 9928 6800		ATLASSIAN CENTRAL No.8-10 LEF STREFT HAYMARKET	1 : 100@A1	BASEMENT / PODIUM EAST-WEST SECTION 2
LANDSCAPE ARCHITECT		STRUCTURAL & CIVIL ENGINEER	LIGHTING CONSULTANT	PROJECT MANAGER Avenor	PROJECT NUMBER	STATUS	DOCUMENT NUMBER ISSUE
TEL +61 2 9699 7182		TEL +612 9439 7288	TEL +1 305 278 1565	TEL +61 2 9152 8668	1906024	SSDA	DA-11D-XXX-06 2
Appendix B

Borehole Logs

Summary of Analytical Results

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 86767.01 DATE: 10 - 12/7/2019 SHEET 1 OF 3

\square	D "	Description	jc		San	npling &	& In Situ Testing	2	Well
RL	Depth (m)	of	Log	be	pth	nple	Results &	Vate	Construction
	. ,	Strata	G	Γ	De	San	Comments	-	Details
20	0.03	BALLAST (BLUE METAL) PLASTIC		1					-
ŀ	- 0.38		<u> </u>	1					-
-	-	BRICK PAVEMENT		ĺ					-
ŀ	-	CONCRETE	1. A. A.						-
6	-1		<u>۵</u> ۵						1
-	-			·					-
	-	1.3m: interface with lower concrete slab							-
	-		1.						-
-	- 1.8	FILL/Sandy CLAY: low plasticity, grey mottled red-brown,	\boxtimes	E_	1.8 1.9		PID<1		
18	-2	fine grained sand, trace ironstone bands, slag and ash, w <pl a="" apparently="" condition<="" in="" soft="" td="" very=""><td>$\rangle\rangle$</td><td></td><td>2.2</td><td></td><td></td><td></td><td></td></pl>	$ \rangle\rangle$		2.2				
Ł	-		\bigotimes	E	2.2		PID<1		-
ŀ	-		\bigotimes	>					-
-	-		\mathbb{K}	-	2.8				-
-	-3	2.0m; with ach and alog, trace glass, brick and coromic tile	\mathbb{N}		3.0		PID<1		-3
-	- 3.2	ragments	IXX	×	33				-
	-	FILL/SAND: fine to medium grained sand, dark brown to	\bigotimes	E	3.5		PID<1		-
ŀ	-	black, moist, apparently in a very loose condition	$ \rangle\rangle$						-
-	-		\bigotimes	E	3.8		PID<1		-
16	-4 4.0	SAND SP: fine to medium grained sand, orange brown,			4.0				
	-	4 3m: grading to pale vellow-grey		E	4.3		PID<1		-
ŀ	-				4.5				-
Ē	-]					
12	-5			1					5
È	-			1					-
ŀ	-			1					-
F	-			{					
E	-6 6(60				-6
14	-	Silty CLAY CI-CH: medium to high plasticity, orange, red	1/	1	0.0				-
ŀ	-	relict rock texture, w <pl, residual="" soil<="" td=""><td>1/1/</td><td>1</td><td></td><td></td><td></td><td></td><td>-</td></pl,>	1/1/	1					-
F	6.54	SANDSTONE: medium grained, orange-red, medium			6.6		PL(A) = 0.97		-
Ē	-	strength with very low strength bands, highly weathered,		с					
13	-7	Iractured, Hawkesbury Sandstone							-7
È	-								-
-	-								-
Ē	7.7	, SANDSTONE: medium grained brown and pale vellow			7.74		PL(A) = 0.15		
	- 8	medium to high strength, moderately weathered, slightly							8
12	- 823	fractured, Hawkesbury Sandstone							
	- 0.20	SANDSTONE: medium grained, pale grey, high strength,		с	8.4		PL(A) = 0.52		
Ē	-	Hawkesbury Sandstone							
E	-								
-=	-9								-9
ŧ	-				9.2				F
Ē									[
E									
Ŀ	10.0)			9.95		PL(A) = 1.3		
-	o . D ·							0	W to C 11m
TY	e: Prol PEOF	BORING: Diacore to 1.3m; Hand auger 1.3m to 5.0m; H	Q coring	LOC g to 20	JGED Om	: VVF	T/INB CASIN	с : Н	vv เ0 0.44m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

		SAMP	LING	3 & IN SITU TESTING	LEG	END]								
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)									
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				_					
BLK	K Block sample		U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)		1.			26				org
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Dudd	12	$a_{\mathbf{J}}$				
D	Disturbed sample)	⊳	Water seep	S	Standard penetration test		/							
E	Environmental sa	mple	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	1	Envir	onm	ient l	Groui	ndwater

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 NORTHING: 6249262.5 DIP/AZIMUTH: 90°/--

BORE No: BH1 **PROJECT No:** 86767.01 DATE: 10 - 12/7/2019 SHEET 2 OF 3

Description					Sam	pling	& In Situ Testing		Well			
坧	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Water	Construction Details			
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SANDSTONE: medium grained, pale grey, high strength, fresh, unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		с с	- 10.72 10.95		PL(A) = 0.89		-11			
	- - 12 				11.95 12.33		PL(A) = 1.6		- 12			
	- 13			с	12.95		PL(A) = 1.2		-13			
- 9	- - - 14 - - - - -				- 13.91 13.93		PL(A) = 1.5		- 14			
	- - 15 - - -				14.95		PL(A) = 1.2		- 15			
	- 16			с	15.95		PL(A) = 1.6		- 16			
	- - 17 - - - - - -	17.35-14.42m: with black carbonaceous laminations			16.95 17.09		PL(A) = 1.9		-17			
2	- 18 				17.95		PL(A) = 1.9		-18			
	- 19			с	18.95		PL(A) = 1.9		19			
	<u> </u>	Bore discontinued at 20.0m			19.90	14/	FL(A) = U.9					
RI TY W RE	G: Prolir (PE OF E ATER OI EMARKS	 DRILLER: Tightsite BORING: Diacore to 1.3m; Hand auger 1.3m to 5.0m; HO BSERVATIONS: No groundwater observed during auger d Groundwater well installed: 20-7.2m backfilled with sand blank PVC with sand backfill, 4.2-0.2m blank PVC with the sand backfill, 4.2-0.2m blank PVC w	2 corir rilling , 7.2-6 penton	LO ig to 2 3.3m b ite bac	GGED: Om entonit kfill, 0.	: WF` e, 6.3 .2-0m	Y/NB CASING -4.3m screened PVC w sand, gatic cover at su	ith surface	W to 6.44m sand backfill, 4.3-4.2m æ			
A B B C D E	Auger sa Bulk sam LK Block san Core drill Disturbed Environm	Auger sample G G as sample PID Photo ionisation detector (ppm) Buk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) K Block sample V Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) Core drilling W Water sample P Pocket penetrometer (kPa) Disturbed sample P Water seep S Standard penetration test Environmental sample W Vater seep S Standard penetration test										

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 DIP/AZIMUTH: 90°/--

BORE No: BH1 **PROJECT No: 86767.01** DATE: 10 - 12/7/2019 SHEET 3 OF 3

Γ		Description	jc		Sam	pling	& In Situ Testing	5	Well
R	(m)	of Strata	Grapt Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
-0	-				20.0				
-	- 21								-21
	- 22								-22
- - - - - - - -	-23								-23
	- 24								-24
- - - - - -	- 25								-25
- - - 9- -	- 26								-26
	- 27								-27
- - - - - - - -	- 28								-28
- 6-	- 29								-29
-	-								

RIG: Proline

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Tightsite

LOGGED: WFY/NB TYPE OF BORING: Diacore to 1.3m; Hand auger 1.3m to 5.0m; HQ coring to 20m

CASING: HW to 6.44m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

	SAM	PLIN	G & IN SITU TESTING	6 LEG	END								
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				_				
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)					26		rt ne	rc
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			JUUY		aj I	r al		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			•					
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Ge	otechnics	1	Environ	ment	Ground	water
-	· · · · · · · · · · · · · · · · · · ·						_ 00	0.000/////00				C. Suna	

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/--

BORE No: BH2 **PROJECT No:** 86767.01 DATE: 10 - 11/7/2019 SHEET 1 OF 3

		Description	<u>i</u>		Sam	ipling &	& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
21	0.28	CONCRETE SLAB 0.08m: interface with lower concrete slab FILL/SAND: fine to medium grained sand, brown, moist, apparently moderately compacted		A/E*_	0.28 0.38 0.5 0.6		PID<1 PID<1		
20	- 1			_A/E_	1.0 1.1		PID<1		- -1 - -
	-	1.5m: trace ash and slag		<u>A/E</u> S	1.5 1.6		PID<1 0,0,2 N = 2		
19	-2	2.1m: with clay, trace shale gravel, moderately compacted		A/E	1.95 2.0 2.1		PID<1		-2
	2.5	Fill/Clayey SAND: fine to coarse grained sand, brown, 15% plastic fines, trace gravel 2-5mm, moist, apparently moderately compacted		A/E_	2.5 2.6		PID<1		
18	- 3 - - - -			A/E S	3.0 3.1 3.45		PID<1 0,0,0 N = 0		
17	-4 4.0	Fill/Silty CLAY: medium plasticity, brown-grey, trace sand, w <pl< th=""><th></th><th>A/E_</th><th>4.5</th><th></th><th>PID<1</th><th></th><th></th></pl<>		A/E_	4.5		PID<1		
	-5	Below 4.8m: with angular shale and ironstone gravel to 20mm		s S	4.95		N = 4		-5
	- 5.2 - - - - - - -	Fill/Silty SAND: fine grained sand, grey and dark grey, trace gravel 2-5mm, moist, apparently variably compacted			6.0		PID<1		-6
15	- 6.2	Fill/SAND: fine grained sand, grey, with silt, wet, apparently variably compacted		S	6.1 6.45		1,1,1 N = 2	10-07-19	7
14	-			A/E_	7.5 7.6 7.95		PID<1 0,0,1 N = 1		
13	0 0.U	Silty CLAY CI-CH: medium to high plasticity, orange brown, with fine to medium grained sand and ironstone gravel, w <pl, alluvial="" possibly="" soft,="" soil<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pl,>							
12	-9 9.0 - - - 9.47	Sandy CLAY CL: low plasticity, pale grey, fine to medium grained sand, w <pl, hard,="" residual="" soil<="" th=""><th></th><th>s</th><th>9.35 9.45</th><th></th><th>25/100 refusal</th><th></th><th>-9</th></pl,>		s	9.35 9.45		25/100 refusal		-9
	-	SANDSTONE: refer following page		с	9.57				
Ŀ	10.0		<u> :::::</u>		_9.95_		PL(D) = 1.4		

DRILLER: Terratest RIG: XC LOGGED: NB CASING: HQ to 8.9m TYPE OF BORING: Diacore to 0.28m; solid flight auger 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m WATER OBSERVATIONS: Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAN	MPLING	3 & IN SITU TESTING	G LEGEND
Α	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)
В	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BL	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
ç	Core drilling	W	Water sample	pp Pocket penetrometer (kPa)
ΙĽ	Disturbed sample	P	Water seep	S Standard penetration test
LE	Environmental sample	ŧ	vvater level	V Shear vane (KPa)

 SURFACE LEVEL:
 21.2 AHD

 EASTING:
 333968

 NORTHING:
 6249250

 DIP/AZIMUTH:
 90°/-

BORE No: BH2 PROJECT No: 86767.01 DATE: 10 - 11/7/2019 SHEET 2 OF 3

		Description		<u>د</u>		Sam	ipling &	& In Situ Testing		Well
님	Depth (m)	of	- door	Log	be	pth	Jple	Results &	Nater	Construction
	. ,	Strata	Ċ	5	Γ	Det	Sam	Comments	_	Details
	- - - - - - - - - - - - - - - - - - -	SANDSTONE: medium grained, pale grey and brown, medium strength with some very low strength bands, moderately weathered, slightly fractured, Hawkesbury Sandstone			С	10.92		PL(D) = 1.5		- 11
10	11.12 - - - -	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone		· · · · · · · · · · · · · · · · · · ·		11.17				
- 6	- 12	Below 12m: unbroken			С	11.93		PL(D) = 1.1		-12
- 8	- 13 		· · · · · · · · · · · · · · · · · · ·			12.95		PL(D) = 1.3		-13
	- - 14 - - -		· · · · · · · · · · · · · · · · · · ·			13.95 14.23		PL(D) = 1.6		- 14
	- - - 15 - -					14.96		PL(D) = 1.4		- 15
	- - - - - - - - - - - - - - -				С	15.95		PL(D) = 1.4		- 16
4	- - - - - - - -					16.95 17.23		PL(D) = 1.3		-17
	- - - 18 - - - -		· · · · · · · · · · · · · · · · · · ·		с	17.96		PL(D) = 0.96		18
	- - - - - - - - - - - - - - - -	19.52m: carbonaceous laminations, dipping 25°			-	18.96		PL(D) = 1.3		- 19
-	-					19.95		PL(D) = 2.2		
RI	G. XC	DRILLER: Terratect						CASING	• н	IC to 8 9m

 RIG: XC
 DRILLER: Terratest
 LOGGED: NB
 CASING: HQ to 8.9m

 TYPE OF BORING:
 Diacore to 0.28m; solid flight auger 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m

 WATER OBSERVATIONS:
 Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

Γ	SAM	IPLIN	G & IN SITU TESTING	LEGEND	
1	A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	3 Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
E	3LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	I Dolidias Partner
	C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
10	D Disturbed sample	⊳	Water seep	S Standard penetration test	
E	E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwat
-	· · · ·				

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 86767.01 DATE: 10 - 11/7/2019 SHEET 3 OF 3

Г					Sam	nling	& In Situ Testing			
Ļ	Depth	Description	phic			e a		Iter	Well	
œ	(m)	ot Strata	Gra	Lype	Depth	ampl	Results & Comments	Wa	Construction	n
╞	-	SANDSTONE: medium grained pale grey high strength	::::::			ů				
	-	fresh, slightly fractured, cross bedding 5°-10°,			20.24				-	
ŀ	-	Hawkesbury Sandstone (continued)							-	
Ē									-	
ŀ	-21				20.96		PL(D) = 1.3		- -21	
-0	-								-	
Ē	[-	
ŀ	-								-	
ŀ	-				21.9		PL(D) = 1.7		-	
Ē.	-22								- 22	
ţ'	-								-	
ŀ	-								-	
Ē	E									
ŀ	-23				22.95		PL(D) = 1.7		-23	
-9-	23.27	Bore discontinued at 23.27m	::::::		-23.27-				-	
Ē									-	
ŀ	-								-	
F	-24								-24	
- ~	E								-	
ŀ	-								-	
Ē	E								-	
Ē	-25								- 25	
-4	-								-	
ŀ	-								-	
E	E									
ŀ	-								-	
E.o	-26								-26	
Ē									-	
ŀ	-								-	
Ē	E									
ŀ	-27								- 27	
-φ -	-								-	
Ē	E									
ŧ									-	
ŀ	-28								- 28	
ŧ	t									
ŧ	-									
F	29								-29	
									-	
ŧ										
E	El									
ŧ										
L	L				1		l	1	L	

 RIG: XC
 DRILLER: Terratest
 LOGGED: NB
 CASING: HQ to 8.9m

 TYPE OF BORING:
 Diacore to 0.28m; solid flight auger 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m

 WATER OBSERVATIONS:
 Saturated sand (fill) encountered at 6.2m

 REMARKS:
 *BD1 at 0.28m

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B Buk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 P
 PCAck I penetrometer (kPa)

 D Disturbed sample
 P
 Water level
 V
 Shandard penetrom test

 E Environmental sample
 Water level
 V
 Shandard penetrom test

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD **EASTING:** 333982 **NORTHING:** 6249281 **DIP/AZIMUTH:** 90°/--

BORE No: BH3 PROJECT No: 86767.01 DATE: 12 - 13/7/2019 SHEET 1 OF 2

Г		Description	U		Sam	pling	& In Situ Testing		Well	
ᆋ	Depth (m)	of	raphi Log	e	th	ple	Results &	Vater	Construction	
	()	Strata	ē	Ty	Dep	Sam	Comments	>	Details	
-	0.15	CONCRETE SLAB			0.2		PID-1		-	
15	- 0.2	Fill/SAND: fine to medium grained sand, yellow-grey, moist, apparently poorly to moderately compacted		<u>_</u>	0.3		PID-1			
	- 0.7 - 0.9 - 1	Fill/Silty CLAY: medium plasticity, grey and red-brown, with medium grained sand and angular basalt gravel to \70mm, w <pl< td=""><td>×</td><td>E_</td><td>0.7 0.8</td><td></td><td>PID<1</td><td></td><td>- - - - 1</td><td></td></pl<>	×	E_	0.7 0.8		PID<1		- - - - 1	
	-	Fill/SAND: fine to medium grained sand, yellow, moist, apparently moderately compacted							-	
-	- - - 1.8	Silty CLAY CH: high plasticity, grey mottled red, trace ironstone gravel 2-3mm, w <pl, residual="" soil<="" stiff,="" td="" very=""><td></td><td></td><td>1.8</td><td></td><td></td><td></td><td></td><td></td></pl,>			1.8					
13	- 1.92 -2 	SANDSTONE: medium grained, brown and grey, medium strength, highly and moderately weathered, fractured, Hawkesbury Sandstone		с	2.37		PL(A) = 1		2	
-	-3 3.03				3.03				-3	
12	- 3.56	SANDSTORE: medium grained, yellow-grey, high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone			3.4		PL(A) = 0.92			
11	-4	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone		С	4.56					
•	- 5				4.95		PL(A) = 1.6			
	-6			С	5.95		PL(A) = 1.4		-6	
-6 - - -	-7				6.95		PL(A) = 1.3		-7	
- 8		7.35 - 7.41m: carbonaceous laminations			7.95		PL(A) = 1.1		-8	
	-9			с	8.95		PL(A) = 1.7			
	-	9.96-10.12m: fine grained sandstone, dark grey			9.95		PL(A) = 2			
							· · · · · ·			

DRILLER: Terratest LOGGED: NB CASING: HWT to 2.0m RIG: XC TYPE OF BORING: Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger 0.9-1.8m; NMLC coring 1.8-15.0m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 15.5 AHD **EASTING:** 333982 **NORTHING:** 6249281 **DIP/AZIMUTH:** 90°/--

BORE No: BH3 PROJECT No: 86767.01 DATE: 12 - 13/7/2019 SHEET 2 OF 2

Г		Description	. <u>0</u>		Sam	ipling &	& In Situ Testing		Well
Ъ	Depth (m)	of	iraph Log	be	pth	nple	Results &	Water	Construction
		Strata	0	ŕ	Ğ	San	Comments	_	Details
	-	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.3				
-	- - - 11 -	10.6-10.7m: carbonaceous laminations			10.95		PL(A) = 1.5		-11
- 4				с	11.05		DI (A) = 1.2		
	- 12				11.95		PL(A) = 1.2		-12
-	- 13				12.95		PL(A) = 1.4		-13
	- - - -				13.31				
-	- 14 			с	13.95		PL(A) = 0.92		14
-	- - - 15 15.0	Bore discontinued at 15.0m			_14.95_ 15.0		PL(A) = 0.74		- - - - - - - - -
	- - - - -								
-	- 16								- 16
	- - - - - - - - - - - - -								-17
	- - - -								
-	- 18								- 18
- °-	- - - -								
4	- 19 - - - -								- 19
	- - -								

RIG: XC **DRILLER:** Terratest LOGGED: NB CASING: HWT to 2.0m TYPE OF BORING: Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger 0.9-1.8m; NMLC coring 1.8-15.0m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

Atlassian Pty Ltd **Proposed Commercial Development** LOCATION: 8-10 Lee Street, Haymarket

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD EASTING: 333994 NORTHING: 6249287 DIP/AZIMUTH: 90°/-- BORE No: BH4 PROJECT No: 86767.01 DATE: 12 - 13/7/2019 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log Sample 쩐 of Depth (blows per 150mm) (m) Type Results & Comments Strata 20 10 15 CONCRETE SLAB 0.1 Fill/SAND: fine to medium grained sand, moist, apparently <u>2</u>.2 0.16 loose, moderately compacted 0.3 CONCRETE SLAB 0.4 Fill/Sandy CLAY: fine to medium grained sand, with approx. 15% black ash, w<PL, generally in a stiff condition Fill/Silty CLAY: medium plasticity, brown, pale grey and red, with fine to medium grained sand and angular ironstone gravel up to 5-10mm, w<PL, generally in a firm condition 0.8-0.9m: with angular to sub-rounded ironstone gravel, 1.0 \up to 50mm FILL/Sandy CLAY: low to medium plasticity, fine to medium grained sand, brown, with 15-30mm angular to sub-angular ironstone gravel, w~PL, generally in a soft condition 14 Е PID<1 15 17 Silty CLAY CH: high plasticity, grey mottled red and yellow, w~PL, firm to stiff, residual soil - 2 2.0 Е PID<1 2.1 2.35 SANDSTONE: medium strength, grey, Hawkesbury Sandstone Bore discontinued at 2.35m Refusal on sandstone 3 - 3 4 - 4

 RIG:
 Miniprobe
 DRILLER:
 Terratest
 LOGGED:
 NB/AS

 TYPE OF BORING:
 Diacore 0-0.16m; hand auger 0.16-1m; Pushtube and solid flight auger 1.0-2.35m

 WATER OBSERVATIONS:
 No groundwater observed during auger drilling

 REMARKS:

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CASING: NA

SURFACE LEVEL: 15.5 AHD **EASTING**: 333980 **NORTHING**: 6249298 **DIP/AZIMUTH**: 90°/-- BORE No: BH5 PROJECT No: 86767.01 DATE: 13/7/2019 SHEET 1 OF 2

		Description	υ		Sam	pling a	& In Situ Testing		Well
ᆋ	Depth (m)	of	aphi Log	e	th	ple	Results &	Vater	Construction
	(11)	Strata	ଅ <u> </u>	Typ	Dep	Sam	Comments	5	Details
E	_	CONCRETE SLAB	4.4						-
15	- 0.3 0.4	FILL/Gravelly SAND: medium grained sand, grey, fine to medium 5-15mm sub-rounded to sub-angular gravel, dry		E	0.35		PID<1 PID<1		
-	- - - -1 1.0	Sandy CLAY CI: medium plasticity, grey mottled red, with fine gravel, w~PL, residual soil	·/·/·	E_	0.0		PID<1		- - -
-	- 1.2 - 1.3	SILTY CLAY CI: medium plasticity, grey mottled red and yellow, trace fine sand, w~PL, residual soil		E_	1.1		PID<1		
-14-	1.36 	SANDSTONE: highly weathered, ironstained, Hawkesbury Sandstone			1.3				-
-	-2	SANDSTONE: medium grained, pale grey and orange, medium strength with bands of very low strength, highly weathered, fractured, Hawkesbury Sandstone		с	2.1		PL(A) = 0.2		2
13 -	-				2.56 2.7		PL(A) = 0.16		- - -
-	- - ³ 3.03	SANDSTONE: modium grained, polo gray, modium and							3
12	- 3.6	high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone		С	3.31		PL(A) = 0.72		
-	-4	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone			4.05				4
	-								
-	-				4.95		PL(A) = 1.2		
-	- 5								
-9 -	-			С					
-	-6				5.95		PL(A) = 1		6
- 60 -	-	6.60-6.65m: carbonaceous laminations							-
-	-7				6.95 7.16		PL(A) = 1.2		-7
	-								-
-	- 8				7.95		PL(A) = 2.1		
4	-								
-				С					
	-9				9.0		PL(A) = 1.8		
-9	-								
E	-				_10.0_		PL(A) = 1.2		-

RIG: Hand tools, Miniprobe and XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Push tube 0.3-1.2m; Solid flight auger to 1.3m; NMLC coring to 15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAIVI	'LIN	G&INSITUTESTING	5 LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)		Indialas Partners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-						 _	

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 NORTHING: 6249298 DIP/AZIMUTH: 90°/--

BORE No: BH5 PROJECT No: 86767.01 DATE: 13/7/2019 SHEET 2 OF 2

Γ		Description	. <u>0</u>		Sam	pling a	& In Situ Testing		Well	
R	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	-	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.2					
	- 11			C	11.02		PL(A) = 1.9		- 11	
	- 12	12.3-12.57m: fine grained sandstone, cross-bedded at base		0	12.0		PL(A) = 1.2		- 12	
	- 13				13.0 13.24		PL(A) = 1.5		- 13	
-	- 14			С	14.0		PL(A) = 1.1		-14	
-	- 15				15.0 -15.27-		PL(A) = 1.4		- 15	
- 0	- 16	Bore discontinued at 15.27m							-16	
	- 17								- 17	
	- 18								-18	
	19 - - - - -									

RIG: Hand tools, Miniprobe and XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR

CASING: HW to 1.1m TYPE OF BORING: Diacore 0-0.3m; Push tube 0.3-1.2m; Solid flight auger to 1.3m; NMLC coring to 15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

SURFACE LEVEL: 15.5 AHD **EASTING**: 333966 **NORTHING**: 6249299 **DIP/AZIMUTH**: 90°/-- BORE No: BH6 PROJECT No: 86767.01 DATE: 14/7/2019 SHEET 1 OF 1

Г			2 111			Sam	nling	& In Situ Testing		
پر	D	epth	Description	phic og		c			ater	Dynamic Penetrometer Test
ľ	(m)	OT	Gra	[ype	Depth	Idme	Results & Comments	Na	(blows per 150mm)
\vdash			Sulata	- 			Š			5 10 15 20 : : : :
ŀ	-	0.06		4.4.						
ŀ	-	0.23		··· ··	Е	0.2		PID<1		-
ŀ	F		25mm, 8mm diameter steel reinforcement bar at 0.15m,	<u>/ /</u>]		0.3				
١.	F		voids below 0.21m	<u>/ /</u>		0.5				
[[Silty CLAY CH: high plasticity, orange-grey, with fine ironstone gravel, w <pl, residual="" soil<="" td=""><td>1/1</td><td>А</td><td>0.5</td><td></td><td>PID<1</td><td></td><td></td></pl,>	1/1	А	0.5		PID<1		
ŀ	Ļ					0.0				
ŀ	ŀ									
ł	ŀ									
ŀ	- 1	1.0	SANDSTONE: medium strength, grey, Hawkesbury							
ŀ	F		Sandstone							
Ē	[1.27								
ŀ	Ļ		Bore discontinued at 1.27m Refusal on sandstone							-
-4	ŀ									
ŀ	ŀ									
ł	-									-
ŀ	F									
ŀ										
[[
ŀ	Ļ									-
ŀ	ŀ									
ł	F									-
-5	ŀ									
ŀ	-									
ľ	Ī									
ŀ	-3									-3
ŀ	ŀ									
ł	ŀ									
ŀ	-									-
F_	F									
Ē	[
	Ļ									
ŀ	Ļ									
ŀ	ŀ									
ł	-4									-4
ł	ŀ									
ŀ	ŀ								1	
[[1	
-=	ļ									
ŀ	-								1	
ŀ	-									
ŀ	ŀ								1	
ł	ŀ									
L								1		<u> </u>
RI	G:	Hand	tools DRILLER: NB		LOG	GED	: NB	CASING	3: N	A

TYPE OF BORING: Diacore 0-0.2m; hand auger 0.2-1.27m WATER OBSERVATIONS: No groundwater observed REMARKS:

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Standard penetration test

Douglas Partners Geotechnics | Environment | Groundwater

PROJECT:Proposed Commercial Development**LOCATION:**8-10 Lee Street, Haymarket

Atlassian Pty Ltd

SURFACE LEVEL: 15.5 AHD **EASTING:** 333965 **NORTHING:** 6249265 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 86767.01 DATE: 12 - 13/7/2019 SHEET 1 OF 1

	_	.	Description	lic		Sam	npling &	& In Situ Testing	5	Dimensia Demotranten Teat
Ч	Dept (m)	h	of	raph Log	be	pth	nple	Results &	Nate	(blows per 150mm)
	()		Strata	G	Ţ	Del	San	Comments	_	5 10 15 20
	-		CONCRETE SLAB, 8mm diameter reinforcement steel	Q Q						
-	- (0.2			_	0.2				
-	-		CONCRETE SLAB, angular Igneous aggregate	4.A.	E	0.3		PID<1		
15	- 0. -	38-	Fill/Silty SAND: fine to medium grained sand, brown, 15% non plastic fines, moist, trace of crushed brick above 0.5m							
-	- ().6	Fill/SAND: fine to medium grained sand, pale grey, trace silt, moist, generally in a dense condition	XX						
-	-									
-	- 1			\bigotimes	Е	1.0		PID<1		-1
-	-					1.1				
	-					1.4				
14	-			\bigotimes	E*	1.5		PID<1		⊦ ⊑ ⊑ ∣
	- '	1.6	Silty CLAY CH: high plasticity, grey, mottled red and yellow, trace fine to medium sandstone gravel, w~PL, very		E	1.6 1.7		PID<1		
	- 1.	85	stiff, residual soil							
-	-2		Silty CLAY CI: medium plasticity, red mottled grey, with sand and fine to medium sandstone and ironstone gravel, w~PL hard residual soil		E	2.0 2.1		PID<1		-2
-	- 2	2.2	SANDSTONE: medium strength, grey, Hawkesbury Sandstone							
13	- 2	2.4 -	Bore discontinued at 2.4m Refusal on sandstone	<u></u>						
	_									
-	-									
[-3									-3
-	-									
-	-									
	_									
12	-									
-	-									
	-									
	_									
-	-4									-4
-	-									
	-									
	_									
-=	-									
$\left \right $	-									
ŀ	_									
	-									

 RIG: Hand tools and Miniprobe
 DRILLER: NB/Terratest

 TYPE OF BORING:
 Hand auger 0.2-1.0m; 1.0-2.4m pushtube

 WATER OBSERVATIONS:
 No groundwater observed

 REMARKS:
 *BD1 and BT120190713

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

LOGGED: NB/AS

CASING: NA

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

SURFACE LEVEL: 15.5 AHD **EASTING:** 333955 NORTHING: 6249283 **DIP/AZIMUTH:** 90°/--

BORE No: BH8 PROJECT No: 86767.01 DATE: 14/7/2019 SHEET 1 OF 2

Г		Description	<u>.</u>		San	npling a	& In Situ Testing		Well
벅	Depth (m)	of	raph Log	be	pth	nple	Results &	Nate	Construction
		Strata	U	È	De	San	Comments		Details
15	0.28	CONCRETE SLAB: angular to subangular aggregate to 15mm, negligible voids, 10mm diameter steel reinforcement at 0.09m and 0.10m, plastic at lower interface		_A/E_	0.2		PID<1		
-	- 0.6 - - - 1	Fill/Clayey SAND: fine to coarse grained sand, brown and yellow, 15% plastic fines, with fine gravel, apparently moderately compacted, moist							
- 14	- - - -	SAND SW: fine to medium grained sand, yellow, with clay, trace gravel, moist, alluvial soil							
	- - - 1.9 -2				- 1.9				-2
13	2.12 	SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Hawkesbury Sandstone		с	2.47		PL(A) = 1.5		
2	- 3 3.07	SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Hawkesbury Sandstone			3.07				-3
-	_ 3.55 - - - - 4			с	3.66		PL(A) = 0.15		-4
	4.13 - -	SANDSTONE: medium grained, yellow-grey, medium then high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone			4.57		PL(A) = 0.66		
-	4.85 - 5	SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone							5
				с	5.95		PL(A) = 1.2		-6
-6					6.95		PL(A) = 1.3		7
00	- - - -				7.2				
-	- 8 - 8 				7.89		PL(A) = 1.9		- 8 - 8
4				С	8.95		PL(A) = 1.2		-9
-	- - -				9.95		PL(A) = 1.4		
RI	G·XC	DRILLER: Terratest		1.00	GGED	· NB	CASIN	G·н	IQ to 1.9m

DRILLER: Terratest TYPE OF BORING: Diacore to 0.28m; Hand auger to 1.0m; NMLC coring to 15m

CASING: HQ to 1.9m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

 ad backfill, 2.4-0m blank PVC, 2.4-0m bencement

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 U
 Tube sample (xmm dia.)

 W
 Vater seep

 Standard penetration test

 Water level
 V
 A Auger sample B Bulk sample BLK Block sample CDE

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

Core drilling Disturbed sample Environmental sample

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333955 **NORTHING:** 6249283 **DIP/AZIMUTH:** 90°/--

BORE No: BH8 **PROJECT No: 86767.01** DATE: 14/7/2019 SHEET 2 OF 2

		Description	. <u>0</u>		Sam	ipling &	& In Situ Testing		Well
묍	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-	SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i> 10.2-10.9m: dark grey, fine grained sandstone		С	10.22				
4	- - 11 -				10.95		PL(A) = 2.5		-11
3	- 12	12.4-12.55m: carbonaceous laminations		с	11.95		PL(A) = 1.5		- 12
-	- 13				12.95 13.25		PL(A) = 1.1		-13
2	- - - - - - - - - - - -			с	13.95		PL(A) = 1.3		- 14
	- 15 15.0	Bore discontinued at 15.0m			-14.99-		PL(A) = 1.3		- - - - - - - - - - - - - - - - - - -
- - -0 -	-				10.0				
· · · · · · · · · · · · · · · · · · · ·	- 16								- 16
-	- 17								-17
	- 18								- 18
· · · ·	- - - - - - - - - -								- 19
	- - - - - -								

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB **TYPE OF BORING:** Diacore to 0.28m; Hand auger to 1.0m; NMLC coring to 15m

CASING: HQ to 1.9m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAME	PLIN	G & IN SITU TESTING	i LEG	END	1		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	1		
В	Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)			
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)			Indudiae Partnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		~	Geotechnics Environment Groundwater
-								

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 **NORTHING:** 6249295 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 86767.01 DATE: 11 - 12/7/2019 SHEET 1 OF 2

Г		Description	U		San	pling	& In Situ Testing		Well
님	Depth	of	aphi og	e	£	<u>e</u>	D	ater	Construction
	(m)	Strata	5	Typ	Dept	amp	Comments	>	Details
╞	-	CONCRETE SLAB	<u>A</u> . A			0)			
ŧ	0.33		<u></u>		0.35				Ē
-15	- 0.65	with fine to medium grained sand, trace fine ironstone			0.45		FID~1		-
ŧ	0.65	gravel, w>PL, residual soil	1/	E/A	0.65		PID<1		
Ē	-1	Silty CLAY CL-CI: low to medium plasticity, pale grey and	Vi/	E/A	0.9		PID<1		-1
ł	-	w <pl, residual="" soil<="" td=""><td>1/</td><td>1</td><td></td><td></td><td></td><td></td><td></td></pl,>	1/	1					
-4	-	- 0.85-1.4m: w∼PL 1.4m: fine ironstone gravel w <pl< td=""><td>1/</td><td>E/A</td><td>1.4</td><td></td><td>PID<1</td><td></td><td></td></pl<>	1/	E/A	1.4		PID<1		
E	1.65	SANDSTONE: fine grained, orange-grev, very low to		1	1.65				
ŧ	-2	medium strength with extremely low strength bands,							-2
ŧ	-	Sandstone							-
- <u>-</u>	-				2.43				
È	-				2.62		PL(A) = 0.88		
ŧ	-			c					
E	- 3								
F.	-			<u> </u>	3.38				
Ē	- 270				3.55		PL(A) = 0.28		
ł	- 3.72	SANDSTONE: medium grained, grey, medium to high		:					-
ŧ	-4	Hawkesbury Sandstone		c					-4
Ē	-								
÷	-								
ŧ	-								
E	-5				4.94		PL(A) = 0.94		-5
ŧ	-								
Ę₽	-								
ŧ	-								-
ŧ	-6	Below 5.91m: unbroken			5.95		PL(A) = 1.6		-6
Ē	-								
-0	-				6.43				
ŧ	-								
E	-7				6.95		PL(A) = 1.3		-7
ŧ	-			c					
Ē	-								
ľ	-								-
ŧ	-				7 95		PI (A) = 0.76		
E	-8				8.0				-8 [
ţ	-								
-	-								
E	-				0.05				
ŧ	-9				8.95		PL(A) = 1.9		-9
Ē									E I
-0	-	9.50-9.56m: with carbonaceous laminations			9.44				
ŧ	-			C					
Ľ	-		:::::	:	_9.95_		PL(A) = 0.97	1	
RI	G: XC	DRILLER: Terratest		LO	GGED	: KR	CASING	Э: Н	IW to 2.5m

 RIG: XC
 DRILLER: Terratest
 LOGGED: KR
 CASING: HW to 2.5

 TYPE OF BORING:
 Diacore to 0.32m; hand auger to 1.0m; Solid flight auger (TC Bit) to 1.6m; NMLC coring to 14.6m

 WATER OBSERVATIONS:
 No groundwater observed during auger drilling

 REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Indudiae Parthere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		B VUYIAJ FAI LIICIJ
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		U
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 NORTHING: 6249295 **DIP/AZIMUTH:** 90°/--

BORE No: BH9 PROJECT No: 86767.01 DATE: 11 - 12/7/2019 SHEET 2 OF 2

Γ		Description	<u>.0</u>		Sam	pling	& In Situ Testing	_	Well
R	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
	-	SANDSTONE: medium grained, grey, medium to high strength, slightly weathered then fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>		с	10.5				
-	- - - 11 - - -	11.17-11.30m: with carbonaceous laminations		с	10.95		PL(A) = 1.3		- 11
	- 12				11.73 11.95		PL(A) = 1.5		- 12
	- - - - 13			С	12.95		PL(A) = 3.1		-13
2	-				13.33				
	- 14			С	13.95		PL(A) = 1.3		- 14
-	- 14.6 - - - 15 -	Bore discontinued at 14.6m			14.6		i z(x) = i		-15
	- - - - - - - - -								- 16
	-								
	- - 17 - -								-17
	- 18								-18

RIG: XC **DRILLER:** Terratest LOGGED: KR CASING: HW to 2.5m TYPE OF BORING: Diacore to 0.32m; hand auger to 1.0m; Solid flight auger (TC Bit) to 1.6m; NMLC coring to 14.6m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

Atlassian Pty Ltd **Proposed Commercial Development** LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 20.1 AHD **EASTING:** 333968 **NORTHING:** 6249242 **DIP/AZIMUTH:** 90°/-- BORE No: BH101 PROJECT No: 86767.03 DATE: 8/4/2020 SHEET 1 OF 1

		Description	<u>.</u>		Sam	pling &	& In Situ Testing	_	VWP
R	Depth (m)	of	raph Log	e	oth	ple	Results &	Vate	Construction
	()	Strata	Ū	Ţ	Det	Sam	Comments	2	Details
20	- 0.1	FILL/BALLAST FILL/Silty CLAY: medium plasticity, pale brown and grey, with fine angular sandstone gravel, trace brick and organic fragments w-PL generally in a loose condition		A	0.1 0.2		PID=2.9 ppm		-
-	- 0.4 - -	FILL/SAND and GRAVEL: fine to medium sand, pale grey, fine to coarse angular sandstone cobbles, gravel and bricks, moist, generally in a dense condition		A	0.5 0.6		PID=1.8 ppm		-
- 19	- - 1 -			A	0.9 1.0		PID=1.2 ppm		- 1 - 1
•	-			A	1.4 1.5		PID=3.3 ppm		-
ł	- 1.8	Bore discontinued at 1.8m							
- 18	-2 - -	- Target depth reached							-2
-	- - - -								-
12	- - 3 - -								-3
-	-								
	- 4 - - -								-4
-	-								-

RIG: Hand Tools

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Tightsite

LOGGED: NB

CASING: Uncased

TYPE OF BORING: Hand auger and crowbar to 1.8m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 P
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

SURFACE LEVEL: 20.1 AHD EASTING: 333976 NORTHING: 6249251 DIP/AZIMUTH: 90°/--

BORE No: BH102 **PROJECT No: 86767.03** DATE: 8/4/2020 SHEET 1 OF 1

			Description	. <u>ಲ</u>		Sam	ipling &	& In Situ Testing		VWP
RL	De (epth m)	of	raph Log	be	oth	alqr	Results &	Vatei	Construction
	Ì	,	Strata	Ū	Ţ	Del	Sam	Comments	2	Details
-0	-	0.1	FILL/BALLAST			- 0.1				-
ľ		0.3	FILL/Silty GRAVEL: fine to medium, dark grey, trace sand and clay, moist, generally in a loose condition		A	0.2		PID=1.1 ppm		
-	-	0.0	FILL/SAND: fine to medium, pale yellow brown and grey, with silt, trace clay lenses, moist, generally in a loose condition		A	- 0.5 - 0.6		PID=1.6 ppm		
	- -1 -				A	- 1.0 - 1.1		PID=2 ppm		- 1 - 1
-	-				A	- 1.5 - 1.6		PID=1.1 ppm		
- 18	-2				A	2.0		PID=1.7 ppm		-2
-	-	2.6	FILL/SAND: fine to medium, pale grey, trace silt, moist,		A	- 2.4 - 2.5		PID=2.4 ppm		-
	-3	2.9	FILL/Silty CLAY: medium plasticity, orange, pale yellow and black, trace sand and gravel, with ash, w>PL, generally in a stiff condition		A	- 3.1 - 3.2		PID=1.4 ppm		-3
-	-		Below 3.5m: grading to dark grey and black, with fine to medium sand and angular gravel		A	- 3.5 - 3.6		PID=4.1 ppm		
	-4	4.0	FILL/Sandy GRAVEL: fine to medium gravel, dark grey and black, fine to coarse sand, trace ash, moist, generally in a medium dense condition		A	4.0		PID=3 ppm		-4
ŀ	-	4.5	FILL/Silty CLAY: high plasticity, orange, pale yellow and pale grey, trace ash, w <pl, a="" condition<="" firm="" generally="" in="" th=""><th>\bigotimes</th><th>A</th><th>4.5 4.6</th><th></th><th>PID=2.2 ppm</th><th></th><th></th></pl,>	\bigotimes	A	4.5 4.6		PID=2.2 ppm		
	-	4.7	Sandy CLAY CH: high plasticity, pale grey, w <pl, appears firm, residual</pl, 		A	4.7 4.8		PID=1.7 ppm		
Ĺ	t	5.0		<u> </u>	A	4.9 5.0		PID=1.1 ppm		
RI T`	G: YPE	Hand OF I	Bore discontinued at 5.0m Toolarget depth reached DRILLER: NB BORING: Hand Auger to 5m		LO	GGED	: NB	CASIN	G : U	Incased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

	SAM	PLINC	3 & IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)

Vertical First Pty Ltd

CLIENT: PROJECT: Proposed Commercial Development

LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

BORE No: BH103 **PROJECT No: 86767.00 DATE:** 15 - 16/4/2020 SHEET 1 OF 2

	Danath	Description	Jic L		San	npling &	& In Situ Testing	er	Well
	(m)	of Strata	Grapt	Type	Depth	ample	Results & Comments	Wate	Construction Details
-		FILL/ CONCRETE	<u>.</u>			Ś			Gatic Cover and
-	0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25 0.4		PID=3		cap
- -1 -1	1				1.0 1.1				
	1.7			A	1.5 1.6		PID=1.3		
-2	2	grey, with angular sandstone, shale, ironstone gravel, w>PL, generally in a stiff to very stiff condition		A	2.0 2.1				2
	2.5	FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td><u>A</u></td><td>2.5 2.6</td><td></td><td>PID=2.4</td><td></td><td></td></pl,>		<u>A</u>	2.5 2.6		PID=2.4		
-3	3			A S	2.9 3.0		2,2,2 N = 4		-3
-				> > >	3.45				Pastfill and Plank
-4	4			>					- PVC pipe
				s	4.5		1,0,0 N = 0		
- 5	4.9 5	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition			4.95 5.0 5.1		PID=0		-5
- 6	6				6.0				-6
-	6.3	SAND SP: fine to medium, pale grey, moist, medium		s	6.45		3,5,7 N = 12		
- 7	7 7.0			•					7
		Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual	· / · / ·		75				
- - - 8	3			A	7.95		2,6,14 N = 20		-8 Bentonite Seal
-	8.5	SANDSTONE: find grained dark brown hald grave and	<u></u>		8.5				
-9	9	orange-grey, highly weathered with extremely weathered bands, low strength with very low strength bands, fractured, Mittagong Formation		с					Sand filter 9 Slotted PVC pipe
	9.15	SANDSTONE: refer following page		с	9.18				End Cap
-	10.0				,				

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

SAN	IPLIN	G & IN SITU TESTING	LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	_	_
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	1.				lners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					o <i>i i</i>
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotecnnics	Enviro	onment I	Groundwater

CLIENT: Vertical First Pty Ltd PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 21.2 AHD **EASTING**: 333978 **NORTHING**: 6249263 **DIP/AZIMUTH**: 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 2 OF 2

Г	1								1	1	
	-)enth	Description	hic		Sam	ipling a	& in Situ Testing	e -	Well	
ā	4	(m)	of	Loc	be	pth	nple	Results &	Wat	Construction	n
			Strata	0	ŕ	Ğ	Sar	Comments		Details	
E	=		SANDSTONE: fine to medium grained, pale yellow,			9.96		PL(A) = 0.65		Bentonite plug -	•
Ē	F		slightly fractured, Hawkesbury Sandstone		с						
E	E										
ţ	ţ	10.8	Bore discontinued at 10.8m			10.75		PL(A) = 0.49		-	
ŧ	- 1 [.]	1	Target depth reached							-11	
Ē	Ē										
ł	ł									-	
ŧ	ţ									-	
Ē	- 12	2								-12	
F	<u>_</u>										
ţ	ţ									-	
F	ŧ										
Ē	E	3								-13	
È,	۰ ۱	0									
ŧ	ŧ									-	
Ē	E										
ł	ţ									-	
F	- 14	4								- 14	
Ē	Ē										
ł	ł									-	
ŧ	ŀ									-	
Ē	- -	5								-15	
F	•									-	
ŀ	ţ									-	
F	F										
E	E	6								-16	
Ļ	o - ''	0									
F	F									-	
Ē	E										
ŧ	ţ									-	
F	- 17	7								-17	
E	ŧ										
ŧ	ţ									-	
ŧ	ŧ								1	ţ. l	
Ē	-18	В								-18	
f	2										
ŧ	ţ									-	
ŧ	ŧ								1	ļ I	
Ē	Ē	a								-19	
Ł	√- '`										
ŧ	ŧ									-	
ŧ	Ē								1	E	
E	E								1		
L			1		I				<u> </u>	<u> </u>	

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 8.5m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAM	IPLIN	G & IN SITU TESTING	G LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
E	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
E	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	Louides Parners
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
E	Disturbed sample	⊳	Water seep	S	Standard penetration test		Or start in I Frederic I Or and I Or and the ter
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

SURFACE LEVEL: 21.2 AHD EASTING: 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/--

BORE No: BH104 **PROJECT No: 86767.00** DATE: 14 - 15/4/2020 SHEET 1 OF 2

		Description	.c		San	npling a	& In Situ Testing	<u> </u>	Well
RL	Depth (m)	of	Sraph Log	ype	epth	nple	Results &	Wate	Construction
		Strata	1	<u> </u>	ă	Sa	Comments		Details
51	0.25	FILL/ CONCRETE			0.25				
-	- - -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition			0.4		PID=0.8		
	- 0.8 - -1 1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace		A A	0.8		PID=1.2 PID=5.7		-1
20	- - -	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition		A*	- 1.4 1.5		PID=0		
-	- 2 2.0	FILL / Silty CLAY: medium plasticity, red-brown mottled		s	- 1.95		2,2,2 N = 4		-2
19	- - - -	orange, trace fine sand and gravel, w <pl, a="" condition<="" firm="" generally="" in="" soft="" td="" to=""><td></td><td>></td><td></td><td></td><td></td><td></td><td></td></pl,>		>					
ŀ				A	2.8 2.9		PID=0		
18.	- 3 - -			s	3.0		1,2,2 N = 4		Backfill and Blank
	- 4				0.40				-4
-	- - -			s	4.5		2,1,2 N = 3		
ŀ	-5 5.0	Below 4.8m: trace ash and medium sand			4.95		N - 0		-5
16	- - - - -	SAND SP: dark yellow-orange, 10% non plastic fines, moist, medium dense, alluvial							
15	- 6			s	- 6.0		3,5,8 N = 13		
-	- - -				- 6.45				
14	-7				7.00				-7
-	- 7.63 - - - 8 -	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength with you low strength bands factured. Mittagener,		C	- 7.03				-8
13	- - - -	Formation			8.24		PL(A) = 0.84		
-	- - - 9 8.95 -				0.00				-9
12	9.42	SANDSTONE: refer following page		с					
-	-				,				

RIG: XC 100

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

	SAME	PLIN	G & IN SITU TESTING	i LEGI	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Develoe Develoere
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Douolas Pariners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		Or start hairs 1 Frankrammant 1 Ores and starter
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

Vertical First Pty Ltd Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

Γ		Description	<u>.</u>		Sam	pling &	& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
10 11 11 11	- 11	SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly fractured then unbroken, Hawkesbury Sandstone		С	9.96 10.1 10.96		PL(A) = 0.77 PL(A) = 0.95		Bentonite Seal
6	- 12			с	· 11.65 11.96		PL(A) = 0.94		12
- 80	- 13				12.96 13.2		PL(A) = 1.2		-13
	- 14			С	13.96		PL(A) = 0.66		
- 9	- 15	Between 14.52m-14.56m: band of dark grey sinstone		С	14.69 14.96		PL(A) = 1.5		-15
	- 16				15.96 • 16.23		PL(A) = 1.2		-16
- + +	- 17			С	16.96		PL(A) = 1.3		Sand filter
	- 18			С	17.61		PL(A) = 1.3		18
2	- 19				18.96 19.23		PL(A) = 2.6		
-	20.0	Bore discontinued at 20.0m Target depth reached		C	19,9		PL(A) = 1		End cap
RI	G·XC1			1.00	GED	NR	CASING	÷н	O to 7 63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

		SAM	PLIN	G & IN SITU TESTING	i LEG	END							
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_	
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				00			
BLK	Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)	1			175			5
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sam	nple	⊳	Water seep	S	Standard penetration test			O to . to . i	1			1
E	Environmental	sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics	I Envir	onment	Groundwa	ter
C D E	Core drilling Disturbed sam Environmental	nple I sample	V ₩ ₽	Water sample Water seep Water level	PL(L pp S V	Pocket penetrometer (kPa) Standard penetration test Shear vane (kPa)		P	Geotechnics	l Envir	onment	Groundwa	я

 SURFACE LEVEL:
 20.1 AHD

 EASTING:
 333988

 NORTHING:
 6249270

 DIP/AZIMUTH:
 90°/-

BORE No: BH105 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 2

Γ		Description	<u>.</u>		Sam	npling &	& In Situ Testing	L	VWP
RL	Depth (m)	of	raph Log	be	pth	Jple	Results &	Natei	Construction
	. ,	Strata	G	Ту	De	San	Comments	_	Details
20-	0.05 - 0.1 - - - 0.37	FILL/BALLAST FILL/Silty CLAY: medium plasticity, dark grey, with angular gravel and organic matter and fragments of plastic, w~PL, generally in a firm condition BRICK PAVEMENT		A	0.05		PID=2.5 ppm		-
-	-	CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength sandstone	1.0.0.0.0.						-
	- - 1 - - - - -								- 1 - 1
18 1	- 2 - 2 								-2
	- - - 3 - - -								-3
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

 RIG:
 Proline
 DRILLER:
 Tightsite

 TYPE OF BORING:
 Diatube to 3.1m, NMLC to 6.5m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 * Field replicate BD1/070420 taken from 0.05-0.1m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: HW to 3.1m

ARKS: * Field replicate BD1/070420 taken from 0.05-

Г

	3/	AIVIPLI	NG & IN SITU IESTIN	g LEG	END							
Α	Auger sample	(	Gas sample	PID	Photo ionisation detector (ppm)		_		_	_	_	
В	Bulk sample	F	P Piston sample	PL(/	A) Point load axial test Is(50) (MPa)							HO HO
BLK	K Block sample	l	J _x Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1					1 T L	ners
С	Core drilling	١	V Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	1	<ul> <li>Water seep</li> </ul>	S	Standard penetration test			Orighteria				
E	Environmental sample	le	Water level	V	Shear vane (kPa)			Geotecnnics	s I Env	ironmen	t I GI	rounawater
						-						

SURFACE LEVEL: 20.1 AHD **EASTING:** 333988 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 2 OF 2

		Description	U		San	npling &	& In Situ Testing		VWP	
RL	Depth (m)	of Strata	Graphi Log	Type	Depth	Sample	Results & Comments	Water	Constructio Details	n
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - - - - - - - - - - - - -	CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength sandstone (continued) SANDSTONE: fine to medium grained, pale yellow, highly weathered, medium to high strength. Mittagong Formation							6	
	- 6.5 - - - - - - - - - - - - -	Bore discontinued at 6.5m - Target depth reached	<u> :::::</u>						- 7 - 7 7	
12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	- 8 								- 8 8 	
- - - - - - - - -	- 9    								- 9 - 9      	
RI	<b>G:</b> Proli	ne DRILLER: Tightsite		LOC	GGED	: NB	CASING	<b>Э</b> : Н	W to 3.1m	

**RIG:** Proline **DRILLER:** Tightsite TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD1/070420 taken from 0.05-0.1m

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

 

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 **Douglas Partners** Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249282 **DIP/AZIMUTH:** 90°/--

BORE No: BH106 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 1 OF 1

Γ			Description	. <u>u</u>		San	npling &	& In Situ Testing		VWP	
ā	r F	Depth (m)	of	Log	e	oth	ble	Results &	Vater	Constructio	n
		()	Strata	Ū	Ţ	Dep	Sam	Comments	>	Details	
F	-		CONCRETE: grey, 2-10mm igneous aggregate	Q Q A						-	
ł	+	0.16 0.2	FILL/SAND: fine to coarse, pale brown, trace seashells,		Ę	0.16 0.2		PID=2 ppm		-	
ľ	Ī	0.3	FILL/CLAY: medium plasticity, brown, red and grey, with	$\bigotimes$	È	0.3		PID=1 ppm			
-	15	0.4	In the coarse sand, trace fine to medium gravel, fine to		E	0.4		PID=1 ppm		-	
ł	ł		FILL/SAND: fine to coarse, dark brown, with igneous rail							-	
Ì	ļ	0.8	ballast, trace coal, dry, hydrocarbon odour	$ \rangle\rangle$						-	
ł	+		trace fine to medium gravel, w~PL			0.9		PID=1 ppm		-	
ł	-		Below 0.5m: apparently in a stiff condition At 0.6m: tile fragment			1.0		r ib- i ppili		- 1	
ļ	ļ		CLAY CI-CH: medium to high plasticity, pale grey mottled		E	1.15		PID<1 ppm			
ł	ł	1.25	apparently very stiff, residual			-1.25-				-	
Ĺ	4		Below 1.1m: w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl<>							-	
ŀ	-		- Target depth reached							-	
ł	ł									-	
ļ	ļ									-	
ł	-:	2								-2	
ŀ	ľ										
-	-									-	
ł	ł									-	
ļ	£-									-	
$\left  \right $	+									-	
ł	-									-	
ļ	-:	3								-3	
ł	+									-	
ł	ľ										
-	F									-	
$\left  \right $	-12									-	
ļ	Ī									-	
ŀ	-									-	
ł	ł									-	
ļ	ľ	ļ								-4	
$\left  \right $	+									ł	
ŀ	ł									t	
F	÷									ŀ	
$\left  \right $	+									ł	
ţ	ţ									ļ	
$\left  \right $	+									ł	
L											

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.16m, Hand auger to 1.25m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** 

CDE

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased





SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/--

BORE No: BH107A **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 1 OF 1

	Description	ici		San	npling &	& In Situ Testing	5	Well	
Dep الت	n) of Strata	Graph Log	Type	Depth	ample	Results & Comments	Wate	Construction Details	ı
	Description         of         0.14       CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.06 m depth         FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" condition<="" generally="" in="" stiff="" td="">         Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL         1.6         FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition         2.2         Sandy CLAY CL: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residu         Below 2.6m: yellow-brown         2.81         Solution         3.9         Bore discontinued at 3.9m         - Target depth reached</pl,>	e e e e e e e e e e e e e e e e e e e	Type	San		& In Situ Testing Results & Comments	05-06-20 i▲ Water	Well Construction Details Gatic Cover and cap Backfill and Blank PVC pipe 2 Bentonite Seal -3 Sand filter Slotted PVC pipe -4	
						CASIN		-5	

TYPE OF BORING: SFA (TC-bit) to 3.9m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed: 0-3.4m Blank PVC pipe, 3.4-3.9m Slotted PVC pipe, End cap at 3.9m, Sand backfill 0-1.5m, Bentonite 1.5-3.2m, Sand filter 3.2-3.9m, Gatic cover at surface.

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
	B Bulk sample	Р	Piston sample	PL(A	) Point load axial test Is(50) (MPa)			Develoo Douteoro
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	) Point load diametral test ls(50) (MPa)			Douolas Pariners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics   Environment   Groundwater
•	· · · · · · · · · · · · · · · · · · ·					-		



Vertical First Pty Ltd Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD EASTING: 333966 NORTHING: 6249307 DIP/AZIMUTH: 90°/-- BORE No: BH108 PROJECT No: 86767.03 DATE: 17/5/2020 SHEET 1 OF 1

### Sampling & In Situ Testing Description VWP Graphic Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate <u>7</u>.7 0.0 0.23 0.25 0.21 FILL/Sandy CLAY: low plasticity, dark brown, fine to medium sand, w~PL PID=2 ppm E 0.23 CLAY CI: medium plasticity, pale grey mottled pale brown and red, w~PL, residual 0.6 Below 0.6m: trace fine to medium ironstone gravel Е PID=2 ppm 0.8 • 1 1 1.05 1.05 SANDSTONE: fine to medium grained, pale grey, highly weathered, very low strength, with clay and ironstone Е PID=2 ppm 1.2 1.2 \bands, Hawkesbury Sandstone Bore discontinued at 1.2m - Target depth reached. Auger refusal - 2 -2 - 3 - 3 -4 - 4

 RIG:
 Miniprobe
 DRILLER:
 Terratest

 TYPE OF BORING:
 Pushtube to 1.2m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

**Proposed Commercial Development** 

LOGGED: AS

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard van (kPa)



**SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

П						Sam	nling	& In Situ Testing		
	Dep	oth	Description	phic					ater	Well
Ľ.	(m	ר)	Strata	Gra	Type	Dept	amp	Results & Comments	Ň	Details
	(	0.14	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 / m depth		Α Δ/Ε*	0.15 0.2 0.4	S	PID=4 PID=5		Gatic Cover and cap
	- 1		FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" generally="" in="" stiff<br="">condition</pl,>		A/E_	0.5 0.9 1.0		PID=2		
4		1.6	sandstone gravel, w~PL		A/E	1.4 1.5		PID=2		PVC pipe
	-2	2.2	FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition	X	A/E	1.9 2.0		PID=2	20 i	2
-9- -9-			Sandy CLAY CL-CI: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residual	· / · / ·	A/E	2.4		PID=1	05-06-	
Ē		2.81	Below 2.6m: yellow-brown	[· <u>/·/</u>	1 A/E :	2.00		PID=2		E IBB
5	-3		red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation		С	2.81 2.94		PL(A) = 1.1		-3
	-4	3.92		$\sim$		3.57 3.62		PL(A) = 0.1		Bentonite Seal
		4.03	SANDSTONE: fine to medium grained, pale grey and red-brown, medium then high strength, moderately weathered, fractured, Hawkesbury Sandstone		С	4.25		PL(A) = 0.9		
È	-5	4.94	SANDSTONE: fine to medium grained, pale grey, high		:	5.0		PL(A) = 1.5		5
	-6		strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		с	6.0		PL(A) = 1.1		Sand filter
						0.00				
	-7				с	7.0		PL(A) = 1.3		
	-8		Between 7.66m-8.10m: band of fine grained sandstone		•	8.0 8.12		PL(A) = 1.6		8
	-9				с	9.0		PL(A) = 1.1		-9
						10.0		PL(A) = 1.3		

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20200516 taken at 0.4-0.5m. Standpipe installed: 0-5.5m Blank PVC pipe, 5.5-11.0m Slotted PVC pipe, End cap at 11.0m, Sand backfill 0-2.3m, Bentonite 2.3-5.0m, Sand filter 5.0-11.0m, Bentonite 11.0-12.0m, Backfill 12.0-15.0m, Gatic cover at surface.

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Dortmore
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1	1.	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		11	Or starting I Free in sect 1 Or sector to the
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics   Environment   Groundwater

**SURFACE LEVEL**: 15.5 AHD **EASTING**: 333945 **NORTHING**: 6249272 **DIP/AZIMUTH**: 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

			1						
	Dopth	Description	hic		Sam	pling a	& In Situ Testing	5	Well
눰	(m)	of	Loc	be	pt	nple	Results &	Vate	Construction
		Strata	G	٦ ۲	De	San	Comments	-	Details
	- - - - - - - - - 11	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		с	. 11.02		PL(A) = 1.1		11 End Cap
- 4	-				11.07				Bentonite Seal
- - - - - -	- 12 - - - - - - -	Between 12.60m-13.78m: band of fine grained sandstone		с	12.0		PL(A) = 1.1		
2	- 13				13.03		PL(A) = 1		-13 Sand Back Fill
-	- - 14 - - - - -			c	14.0 14.08		PL(A) = 1.2		14
F				:	45.0				
	- 15 15.01 - - - - - - -	Bore discontinued at 15.0m - Target depth reached							
- - - - - - -	- 16								- 16
	- - 17 - - - -								-17
- - - - - - - - - - - -	- 18 - 18 								-18
	- - - - - - - -								19
-	- - -								

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20200516 taken at 0.4-0.5m. Standpipe installed: 0-5.5m Blank PVC pipe, 5.5-11.0m Slotted PVC pipe, End cap at 11.0m, Sand backfill 0-2.3m, Bentonite 2.3-5.0m, Sand filter 5.0-11.0m, Bentonite 11.0-12.0m, Backfill 12.0-15.0m, Gatic cover at surface.

	SAN	MPLING	6 & IN SITU TESTING	LEG	END							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-		_	_	
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1		IP			глег	5
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		O to . to . i .				1 0	
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotecnnics	IE	nvira	onment	I Groundwate	эr

SURFACE LEVEL: 15.3 AHD EASTING: 333968 NORTHING: 6249312 DIP/AZIMUTH: 90°/-- BORE No: BH109A PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 1

### Sampling & In Situ Testing VWP Graphic Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, angular to subangular aggregate to <u>0</u>.0 0.2 0.3 15mm, negligible voids, no reinforcement steel observed FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w<PL, apparently stiff to very stiff, residual (possibly extremely weathered Ashfield Shale) 1 1.05 SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, Hawkesbury Sandstone Bore discontinued at 1.15m -2 - Refusal to TC-bit auger ·2 -3 - 3 Δ ۰4 5 -5 0 6 6 7 • 7 - 8 - 8 9 ۰q

**RIG:** Miniprobe

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest SFA (TC-bit) to 1.15m LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS: Surface level taken from survey drawing provided

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 B
 C
 Core drilling
 W
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetrometer (kPa)

 D
 Disturbed sample
 Water seep
 S
 Standard penetrometer (kPa)
 Geotechnic

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 File



SURFACE LEVEL: 15.3 AHD EASTING: 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 1 OF 2

	Description	U		Sam	pling	& In Situ Testing		Well
Depth (m)	of	raphi Log	e	oth	ple	Results &	Vater	Construction
	Strata	Ū_	TyF	Dep	Sam	Comments	>	Details
0.2 0.3	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement steel observed			0.4				Gatic Cover and cap
	FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition		<u>A/E</u>	0.4		PID<1		Backfill and Blank
-1 1.05	apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation)		A/E	0.9 1.05 1.16		PID<1 PL(A) = 1.8		-1
-	SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone		С	1.65				
-2			с	2.11		PL(A) = 0.7	-20 I	-2
- - 3 ^{2.93}	SANDSTONE: fine to coarse grained, pale grey and pale			3.1		PL(A) = 0.5	90-60	-3 Bentonite Seal
-	yenow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Hawkesbury Sandstone			3.11				Derivine Geal
-4			С	3.92		PL(A) = 0.7		-4
- 4.9 -5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then			4.65 4.93 5.04		PL(A) = 0.9 PL(A) = 1		-5
-	unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		С					Sand filter
-6				6.0		PL(A) = 0.7		
- 7			С	7.0		PL(A) = 1.2		-7
-			с	7.4				
-8			с	8.0		PL(A) = 1.8		
-9-9				9.0		PL(A) = 1.9		Slotted PVC pipe
-			с	9.20				
<u> </u>		1:::::		_10.0_		PL(A) = 1.4		-    : =

RIG: XC **DRILLER:** Terratest TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

**REMARKS:** Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLIN	G&INSITUTESTING	G LEGI	END			
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	B Bulk sample	Р	Piston sample	PL(A	) Point load axial test Is(50) (MPa)		<b>_</b>	Develoe Develoero
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	) Point load diametral test ls(50) (MPa)			Douolas Pariners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics   Environment   Groundwater
1						-		



Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 2 OF 2

		Description	. <u>0</u>		Sam	npling &	& In Situ Testing	L	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
	-	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	10.73				
- 4	-11				11.0		PL(A) = 1.8		
	-			С	12.0				End Cap
	-				12.38		FL(A) - 1.2		Bentonite Seal
2	- 13			С	13.0		PL(A) = 1.4		-13
				с	13.88 14.0		PL(A) = 1.3		14 Sand Back Fill
-	- 15 15.0	Bore discontinued at 15.0m			-15.0-				- 
-0	-	- Target depth reached							
- - - - - -	- 16								
	- 17								-17
	- 18								- 18
	- 19								-19
-	-								

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

**DRILLER:** Terratest

LOGGED: NB TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m CASING: HWT to 1.05m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

**REMARKS:** Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develop Dortmore
B	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1		Douglas Parliers
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Contrologica I Environment I Curve durates
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics   Environment   Groundwater

SURFACE LEVEL: 15.3 AHD **EASTING:** 333960 NORTHING: 6249314 DIP/AZIMUTH: 90°/--

BORE No: BH110 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

### Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement <u>له</u> ک 0.2 0.2 FILL/ SAND: fine to coarse, pale orange, moist, generally А PID<1 0.3 0.3 \in a medium dense condition FILL/ Silty CLAY: medium to high plasticity, pale grey mottled orange, with fine to coarse sand and brick, 0.5 А PID<1 concrete and asphalt fragments, w<PL, generally in a stiff 0.6 0.6 \condition Bore discontinued at 0.6m - Termination on brick and concrete fragments 1 1 -2 -2 - 3 - 3 .₽ -4 - 4

RIG: Hand tools DRILLER: Nick Ruha/NB TYPE OF BORING: Diatube (100mm) to 0.2m, then hand auger WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: NA

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽



SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 NORTHING: 6249317 **DIP/AZIMUTH:** 90°/--

BORE No: BH111 PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 2

Γ			Description	U	ی Sampling & In Situ Testing					\/WP
R	D	epth	of	aphi -og	ø	÷	ble	Populto 8	/ater	Construction
		)	Strata	5 d	Typ	Dep	Sam	Comments	5	Details
		0.05	ASPHALTIC CONCRETE							
-	-	0.15	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition							-
ŀ	-	0.5	FILL/ SAND: fine to coarse, pale grey and brown, moist, generally in a loose to medium dense condition		U/E	0.4 0.5		PID<1		-
- - - - - -	-		FILL/ Silty CLAY: low to medium plasticity, dark grey and brown, w <pl, a="" condition<br="" generally="" in="" stiff="">Below 0.6m, grading to sandy clay, pale orange and dark orange, fine to medium sand</pl,>							-
-	-1	1 2			U/E	1.1		PID<1		-1
-	-	1.2	FILL/ SAND: fine to medium, dark brown and grey, trace silt, moist, generally in a medium dense to dense condition		U/E	1.2 1.3 1.4		PID<1		-
		20				20				2
-	-	2.0	SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial		U/E	2.0		PID<1		-
16	-		Below 2.4m: grading to pale orange							-
-	-3	3.2			U/E*	3.0 3.1		PID<1		-3
5	-	0.2	Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w <pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation)</pl,>							-
-	- 4 4 		Below 4.4m: grading to pale grey		U/E	· 4.0 · 4.1		PID<1		4 4 
14	-									-

**RIG:** Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

**DRILLER:** Terratest TYPE OF BORING: Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners 1 Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater
SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 NORTHING: 6249317 DIP/AZIMUTH: 90°/--

BORE No: BH111 PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 2 OF 2

# Sampling & In Situ Testing Graphic Log VWP Description Water Depth 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w<PL, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation) (continued) 5.4 Bore discontinued at 5.4m - Target depth reached 6 -6 - 7 - 7 8 8 9 -9

**RIG:** Geoprobe

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

**Proposed Commercial Development** 

**DRILLER:** Terratest Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

G P U_x W

₽

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDF

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)



SURFACE LEVEL: 16.7 AHD EASTING: 333926 NORTHING: 6249325 DIP/AZIMUTH: 90°/--

BORE No: BH112A PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 1

#### Sampling & In Situ Testing Well Description Graphic Log Water Depth 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata 0.05 Gatic Cover and ASPHALTIC CONCRETE cap 0.25 FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition FILL/ SAND: fine to medium, dark grey-brown, moist, generally in a loose condition Backfill and Blank PVC pipe 1.4 SAND SP: fine to medium, pale orange, moist, apparently medium dense, alluvial 1.8 Sandy CLAY CI: medium plasticity, pale grey and pale 2 2.0 ·2 orange, fine sand, w<PL, apparently stiff, alluvial Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel, w<PL, very stiff, residual (possibly extremely weathered Mittagong Formation) Bentonite Seal - 3 - 3 3.2 Sandy CLAY CL: low plasticity, dark red and pale grey, fine sand, w<PL, hard, residual (extremely weathered V 34 05-06-20 Mittagong Formation) SANDSTONE: fine grained, dark brown and pale grey orange, highly weathered, medium strength, Mittagong Δ Sand filter Formation Slotted PVC pipe 45 End Cap Bore discontinued at 4.5m - Target depth reached 5 -5 6 6 • 7 7 8 - 8 q ۰q **RIG:** Geoprobe **DRILLER:** Terratest LOGGED: NB CASING: NA

TYPE OF BORING: SFA (TC-bit) to 4.5m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

Standpipe installed: 0-4.0m Blank PVC pipe, 4.0-4.5m Slotted PVC pipe, End cap at 4.5m, Sand backfill 0-2.0m, Bentonite 2.0-3.6m, Sand filter 3.6-4.5m, Gatic cover at surface. Surface level taken from survey drawing provided **REMARKS**:

	SAMPLI	NG & IN SITU TESTING	G LEGEND		
A Augers	imple G	Gas sample	PID Photo ionisation detector (ppm)		
B Bulk sa	nple F	Piston sample	PL(A) Point load axial test Is(50) (MPa)		o Douteono
BLK Block s	mple L	J _x Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		s Pariners
C Core di	ling V	V Water sample	pp Pocket penetrometer (kPa)		
D Disturb	d sample ⊅	Water seep	S Standard penetration test	Or start line I F	
E Enviror	nental sample	Water level	V Shear vane (kPa)	Geotecnnics   E	nvironment   Groundwater



Vertical First Pty Ltd **Proposed Commercial Development** 8-10 Lee Street, Haymarket

**SURFACE LEVEL**: 16.8 AHD **EASTING**: 333928 **NORTHING**: 6249324 **DIP/AZIMUTH**: 90°/-- BORE No: BH112B PROJECT No: 86767.00 DATE: 18/5/2020 SHEET 1 OF 2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\square$			Description	0		San	npling &	& In Situ Testing			
$ \begin{bmatrix} m \\ m \end{bmatrix} \\ \hline m \\ \hline m$	۲.	De	epth	Description	aphic	0	ء			ater	Construction	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ľ	1)	m)	Strata	U E E E E	Type	Dept	amp	Results & Comments	ŝ	Details	
1     Construction     1     Construction     1     Construction     1     Construction     1     Construction     0     0     1     1     Construction     0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>$\mathbb{H}$</td> <td></td> <td>0.05</td> <td></td> <td>· . ·</td> <td>-</td> <td></td> <td>S</td> <td></td> <td></td> <td>Gatic Cover and</td> <td></td>	$\mathbb{H}$		0.05		· . ·	-		S			Gatic Cover and	
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		_	0.25		4.4.		03				_ cap	8
$ \begin{array}{c} 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		-	0.3		$\mathbb{X}$	A/E	0.0		PID<1			X
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		-	0.6		$\bigotimes$	A/E	0.6		PID<1			X.
PLD SANUE The to medium, dark grey-brown, most, medium energing in allows condition       PLD SANUE The to medium, pale orange, most, apparently       Are 14       PLD SANUE The to medium, pale orange, most, apparently       PLD SANUE The to medium plasticity, pale grey and pale to many standard, medium plasticity, pale grey and pale to medium plasticity, pale grey and pale to medium plasticity, pale grey, mediad dark red-orange and velow, with ironshore gravel, we stift reducial (possible extremely weathered Ashfield Shale)       9       8.11       PLD SANUE The to medium plasticity, pale grey, mediad dark red-orange and velow, with ironshore gravel, we stift reducial (possible extremely weathered Ashfield Shale)       3.0       2.8.20 (40)       7         2       Sandy CLAY CL-1 low plasticity, dark red and pale grey, maximum and legs steringh, fractured.       5       3.4       7         3.4       The sand, wcPL, apparent steringh, fractured.       5       2.45       3.4       3.4         2       Sandy CLAY CL-1 low plasticity, dark red and pale grey, maximum and legs steringh, fractured.       5       3.4       7         3.4       The sand, wcPL, apparent steringh, fractured.       6       6.1       3.6       9       9         2       Sandy STONE: fine to coarse grained, pale orange. highly weathered, medium strength, fractured to signify weathered, cross-bedding 10°-20°.       5.35       PL(A) = 0.5       7         6       6.4       Sandy Strone       6.3       7       7       7	-9	-		FILL/ SANDSTONE: possible sandstone block	$\bowtie$		0.7					8
$ \begin{array}{c} 1 \\ 1 \\ 3 \\ SAND SP. fine to medium, pale orange, moist, apparently \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	ŀ	-1		aenerally in a loose condition	$\mathbb{K}$							8
$ \begin{array}{c} \begin{array}{c} & SAND SP: fine to medium, plasticity, pale gray and pale  2 0 crange. fine sand, wcR2, apparently suff, allwal  3 andy CLAY CL: medium plasticity, pale gray and pale  2 0 crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c crange. fine sand, wcR2, apparently suff, allwal  3 2 c c c c c c c c c c c c c c c c c c$	Ē	-	1 /	5,	$\bigotimes$		14				Backfill and Blank	X
2       10       medlum dense, alluvial       PDC1         2       20       carage, fine sand, wcPL, apparently stiff, alluvial       20       6.9,11         3       Sitty CLAY CLAY Check-medium basicity, pale grey and pale grey, with torstone gravel, wethered       5       2.45         3       3.0       2.8,20/140       6.9,11       N = 20         3       3.0       2.8,20/140       reluaid       3.4         3       3.4       3.4       3.4       3.4         3       3.4       3.4       3.4       3.4         4       Wattagong Formation       3.4       3.4       3.4       9L(A) = 0.4         5       5.14       SANDSTONE: fine to coarse grained, pale gray, trace, drak there dreed menium strength, fractured, cross-bedding 10°-20°.       6.1       6.4       PL(A) = 0.5         6       6.40       SANDSTONE: fine to coarse grained, pale gray, trace, drak rey allstone bands, slightly weathered then free, high strength, fractured, cross-bedding 0°-10°.       7.15       PL(A) = 0.5       7         6       6.40       SANDSTONE: fine to coarse grained, pale gray, trace, drak rey allstone bands, slightly weathered then free, high strength, fractured, cross-bedding 0°-10°.       7.15       PL(A) = 0.5       <		_	1.4	SAND SP: fine to medium, pale orange, moist, apparently		A/E	1.4		PID<1			X.
2       20       Sandy CLAY CI: medium paidothy, pale grey and pale organge, fine sand, wePL, ayer part with ronstone gravel, weWL, were Still, pale grey, weWL, were still, residual (possible extremely weathered Ashfield Shale)       20       21       24         3       32       Sandy CLAY CL: low plasticity, dark red and pale grey, weWL, were still, residual (extremely weathered Ashfield Shale)       30       2.45       30         3       32       Sandy CLAY CL: low plasticity, dark red and pale grey, more stalking or Formation)       34       34       94         4       Bentomite Sale       3.4       3.4       3.4       3.4       3.4         5       SANDSTONE: fine grained, dark brown and pale grey, rearge, finghty weathered the moderately weathered, medium and high strength, fractured, Mittagong Formation       5.35       PL(A) = 0.5       5.4         6       6.1       6.1       6.1       6.1       6.1       6.1         6       6.46       SANDSTONE: fine to coarse grained, pale grey, trace ding the dark slightly weathered the firsch, high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone       7.15       PL(A) = 0.5       7         7       Between 8.02m-9.83m, cross-bedding 10°-20°       8.09       PL(A) = 2.1       9       Sand filter         9       Sonted PVC pipe       9.00       9.1       PL(A) = 2.1       9       Sonted PVC pipe </td <td>12</td> <td>-</td> <td>18</td> <td>medium dense, alluvial</td> <td></td> <td>A/E</td> <td>1.6</td> <td></td> <td>PID&lt;1</td> <td></td> <td></td> <td>8</td>	12	-	18	medium dense, alluvial		A/E	1.6		PID<1			8
2       Call QL AY CL-1 medium to high plasticity, page grey motified dark red-crarage and yellow, with ironstone gravel, we with residual (possible extremely weathered Astheted Shale)       3.0       2.45         3       3.2       Sand CL AY CL-1 key plasticity, dark red and pale grey, motified dark red-crarage and yellow, with ironstone gravel, astheted Shale)       3.0       2.8.20'H40		-2	2.0	Sandy CLAY CI: medium plasticity, pale grey and pale	<u>. /. /</u>		2.0					8
1     1     1     1     1     1       3     3.2     Sandy CLAY OL: low plasticity, dark red and pale grey, 3.4     3.0     2.2.201/40     3.4       3     3.2     Sandy CLAY OL: low plasticity, dark red and pale grey, 3.4     3.6     9     PL(A) = 0.4       4     Mitagong Formation     SANDSTONE: fine grained, dark brown and pale grey, race dark grey carage, highly weathered, medium strength, fractured, cross-bedding 0°-20°, Hawkesbury Sandstone     6     6.1       6     6.46     SANDSTONE: fine to coarse grained, pale grey, trace dark grey sitistone bands, slightly tractured, cross-bedding 0°-10°, Hawkesbury Sandstone     6.1     6.34       7     Between 8.02m-9.83m, cross-bedding 10°-20°     8.09     PL(A) = 0.1     7       8     9     Detween 8.02m-9.83m, cross-bedding 10°-20°     8.09     PL(A) = 1.1     9	ļ	-		Silty CLAY CLCH: medium to high plasticity, pale grey	KV/	s			6,9,11			X.
3       wePL, very stiff, residual (possible extremely weathered Ashrield Shale)       3.0       28.201/40         3       3.2       Sandy CLAY CL: low plasticity, dark red and pale grey, Inte sand, wePL, hard, residual (extremely weathered Mittagong Formation)       3.4       3.6       PL(A) = 0.4         2       SANDSTONE: fine grained, dark brown and pale grey-carage, highly weathered then moderately weathered the moderately weathered, medium strength, fractured to slightly fractured, cross-bedding 10°-20°.       4.0       PL(A) = 0.5       4         5       5.14       SANDSTONE: fine to coarse grained, pale errange, highly meathered memoderately weathered memoderately weathered the moderately weathered medium strength, fractured to slightly fractured, cross-bedding 10°-20°.       5.35       PL(A) = 0.5       5         6       6.46       SANDSTONE: fine to coarse grained, pale grey, trace dark grey slistione bands, slightly weathered then fresh, high strength, slightly meathered then fr	F	-		mottled dark red-orange and yellow, with ironstone gravel,	1/1/		2.45		N = 20		F I 🕅 🕅	Å.
2       3       3.2         3.4       3.4       3.4         3.4       3.4       3.4         3.4       3.68       PL(A) = 0.4         SANDSTONE: fine grained, dark brown and pale grey, mathemed them moderately weathered them moderately weathered.       5.35       PL(A) = 0.5         5       5.14       SANDSTONE: fine to coarse grained, pale orange, highly weathered, moderately weathered,	E			w <pl, (possible="" extremely="" residual="" stiff,="" very="" weathered<br="">Ashfield Shale)</pl,>	1/1/						E 186	2
3.2       3.2       3.2       3.3       3.0       3.4       3.4         3.4       3.4       3.4       3.4       3.4       3.4       3.4         3.4       3.4       3.4       3.4       3.4       3.4       3.4         3.4       3.4       3.4       3.4       3.4       3.4       3.4         3.4       3.6       3.4       3.6       PL(A) = 0.4       PL(A) = 0.4         4       Bentonite Seal       PL(A) = 1.5       PL(A) = 1.5       PL(A) = 1.5         5       5.14       SANDSTONE: fine to coarse grained, pale orange, highly weathered, medium strength, fractured, medium strength, fractured, coss-bedding 10°-20°, Hawkesbury Sandstone       5.36       PL(A) = 0.5       9         6       6.1       6.1       6.4       PL(A) = 0.5       9       6         6       6.4       SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered fine fresh, high strength slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone       7.15       PL(A) = 0.5       7         7       Between 8.02m-9.83m, cross-bedding 10°-20°       8.09       PL(A) = 0.5       9       Sand filter         9       Solude PVC pipe       9       Solude PVC pipe       9       Solude PVC pipe       9	-4	_										2
3.2       Sandy CLAY CL: low plasticity, dark red and pale grey, fine sand, w-PL, hard, residual (extremely weathered)       5       3.4       ontestal       returns         3.4       A       SANDSTONE: fine printed, dark brown and pale grey, recording, highly weathered them moderately weathered, medium strength, fractured, Mittagong Formation       9       PL(A) = 0.4       PL(A) = 0.4         5       SANDSTONE: fine to coarse grained, pale orange, highly weathered to slightly fractured, cross-bedding 10°-20°, Hawkesbury Sandstone       5.36       PL(A) = 0.5       9         6       6.4       SANDSTONE: fine to coarse grained, pale orange, highly weathered them foresh, high strength, fractured, cross-bedding 10°-20°, Hawkesbury Sandstone       6.1       6.34       PL(A) = 0.5         6       6.4       SANDSTONE: fine to coarse grained, pale grey, trace dark grey silts fore backs, slightly weathered them fresh, high strength, slightly facured, cross-bedding 0°-10°, Hawkesbury Sandstone       6.1       6.34       PL(A) = 0.5         7       Between 8.02m-9.83m, cross-bedding 10°-20*       8.09       PL(A) = 2.1       9       Sand filter         9       Between 8.02m-9.83m, cross-bedding 10°-20*       8.09       PL(A) = 2.1       9       Sand filter		-3			1/1/		3.0		2.8.20/140		-3	1
23       Ine sand, w-PL, had, residual (extremely weathered       3.44       3.44         3.44       3.64       3.44         3.64       3.44       3.64         SANDSTONE: fine grained, dark brown and pale grey-orange, highly weathered, medium and high strength, fractured, Mittagong Formation       4.0       PL(A) = 0.4         5       5.14       SANDSTONE: fine to coarse grained, pale orange, highly weathered, medium strength, fractured, cross-bedding 10°-20°, Hawkesbury Sandstone       5.36       PL(A) = 0.5         6       6.46       SANDSTONE: fine to coarse grained, pale grey, trace dark grey silts fine to coarse grained, pale grey, trace dark grey silts fine to coarse grained, pale grey, trace dark grey silts fine bands, slightly weathered the fresh, high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone       7.15       PL(A) = 0.5         7       Between 8.02m-9.83m, cross-bedding 10°-20°       8.09       PL(A) = 1.1       8         9       9       9       900       9.1       PL(A) = 2.1       9       Sand filter	È	-	3.2	Sandy CLAY CL: low plasticity, dark red and pale grey,	1.7.7	S			refusal			Z
$ \begin{array}{c} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{5} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{6} \\ c_{7} $	Ē	-	3.4	fine sand, w <pl, (extremely="" hard,="" residual="" td="" weathered<=""><td></td><td></td><td>3.4</td><td></td><td></td><td></td><td>E I B B</td><td>Ŋ.</td></pl,>			3.4				E I B B	Ŋ.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_m			SANDSTONE: fine grained, dark brown and nale			3.68		PL(A) = 0.4			2
weathered, medium and high strength, tractured, Mittagong Formation C C C C C C C C	È	-4		grey-orange, highly weathered then moderately			4.0		PL(A) = 1.5		-4 Bentonite Seal	2
$\begin{array}{c} 22\\ \\ 5\\ \\ 5\\ \\ 5\\ \\ 1\\ \\ -7\\ \\ -8\\ \\ -8\\ \\ -9\\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ŀ	-		Weathered, medium and high strength, fractured, Mittagong Formation	$\Lambda$ /							1
$\begin{bmatrix} 2^{2} \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	F	-			$\left  \right\rangle /$							J.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E	_			ΙX							X
$ \begin{bmatrix} 5 \\ 5.14 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-2	-			$ / \rangle$	С						2
SANDSTONE: fine to coarse grained, pale orange, highly weathered then moderately weathered, medium strength, fractured to slightly fractured, cross-bedding 10°-20°, Hawkesbury Sandstone 6.1 6.46 SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered then fresh, high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone 7.15 PL(A) = 0.5 PL(A) = 0.		-5	5 1/		$\langle \rangle$						-5	
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		-	5.14	SANDSTONE: fine to coarse grained, pale orange, highly			5 35		PI(A) = 0.5	Ţ		2
Hawkesbury Sandstone Hawkesbury Sandstone $P = \begin{bmatrix} 6.46 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$	Ē	-		fractured to slightly fractured, cross-bedding 10°-20°,			0.00		1 200 0.0	3-20		3
$ \begin{array}{c} 6 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 8 \\ \hline \\ 7 \\ \hline \\ 8 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ \\ 8 \\ \hline \\ 7 \\ \hline \\ \\ 8 \\ \hline \\ \\ 7 \\ \hline \\ \\ 8 \\ \hline \\ \\ 7 \\ \hline \\ \\ 8 \\ \hline \\ \\ 7 \\ \hline \\ \\ 8 \\ \hline \\ \\ \\ 8 \\ \hline \\ \\ \\ 8 \\ \hline \\ \\ \\ \\$	<u>-</u>			Hawkesbury Sandstone						05-06		•
6.46 6.46 SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered then fresh, high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone 7.15 PL(A) = 0.5 7.15 PL(A) = 0.5 7.15 PL(A) = 1.1 8 Sand filter 9 Siotted PVC pipe	È	-6										
$\begin{bmatrix} 6.46 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$		-					6.1					
SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered then fresh, high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone 7.15 PL(A) = 0.5 7.9 Between 8.02m-9.83m, cross-bedding 10°-20° 8.09 PL(A) = 1.1 9.09 PL(A) = 2.1 9 Slotted PVC pipe	F	-	6 46				6.34		PL(A) = 0.3			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	Ē	-	0.10	SANDSTONE: fine to coarse grained, pale grey, trace								
$\begin{bmatrix} -7 \\ -8 \\ -9 \end{bmatrix}$ Hawkesbury Sandstone $\begin{bmatrix} 7 \\ -8 \\ -9 \end{bmatrix}$ Between 8.02m-9.83m, cross-bedding 10°-20° $\begin{bmatrix} -7 \\ -8 \\ -9 \end{bmatrix}$ Between 8.02m-9.83m, cross-bedding 10°-20° $\begin{bmatrix} -7 \\ -8 \\ -9 \\ -9 \end{bmatrix}$ PL(A) = 1.1 $\begin{bmatrix} -7 \\ -8 \\ -9 \\ -9 \end{bmatrix}$ PL(A) = 2.1 $\begin{bmatrix} -7 \\ -8 \\ -9 \\ -9 \end{bmatrix}$ Soluted PVC pipe	-9	_		high strength, slightly fractured, cross-bedding 0°-10°,								
$\begin{bmatrix} 0 & & & & \\ -8 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -9 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & $		-7		Hawkesbury Sandstone			7 15					
$\begin{bmatrix} \sigma & 7.9 \\ 8 & 7.9 \\ -9 \end{bmatrix}$ Between 8.02m-9.83m, cross-bedding 10°-20° $\begin{bmatrix} C \\ 8.09 \\ 9.09 \\ 9.1 \end{bmatrix}$ PL(A) = 1.1 $\begin{bmatrix} 8 \\ -9 \\ 9 \\ -9 \end{bmatrix}$ Soluted PVC pipe $\begin{bmatrix} 9 \\ -9 \\ -9 \end{bmatrix}$	ļ	-					7.15		PL(A) = 0.5			
$\begin{bmatrix} \sigma & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & $	Ē	-									F   (:) =:	
$\begin{array}{c c}  & 7.9 \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & $	[				X							
Between 8.02m-9.83m, cross-bedding 10°-20° $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		- 8	7.9		K							:]
9.09 9.1 9.09 9.1 9.09 9.1 PL(A) = 2.1		-		Between 8.02m-9.83m, cross-bedding 10°-20°			8.09		PL(A) = 1.1			
$\begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	Ē	-										
-         9         9.09         9.09         9.09         9.09         9.01         PL(A) = 2.1         9 Slotted PVC pipe	E	_									[    :目:	
9.09 9.1 9.09 9.1 PL(A) = 2.1	-∞	-									L Sand filter ↓	
	ţ	-9					9.09		PL(A) = 2.1		9 Slotted PVC pipe	
	ţ,	-					9.1					$\cdot$
	Ē	-				с					[    :目:	
		_										
	Ł	-										1

**RIG:** Geoprobe

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT:

REMARKS: Rapid drilling between 4.1-4.9m & 7.5-8.0m. 20% water loss at 9m. Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-12.0m Slotted PVC pipe, End cap 12.0m, Sand backfill 0-2.5m, Bentonite 2.5-5.5m, Sand filter 5.5-12.5m, Bentonite 12.5-13.0m, Backfill 13-15m

	SAM	PLIN	G & IN SITU TESTING	i LEG	END						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				00		
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1			135		ners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			O to a hard a	I Emilia		0
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics	I Envir	onment I	Groundwater

SURFACE LEVEL: 16.8 AHD **EASTING:** 333928 NORTHING: 6249324 **DIP/AZIMUTH:** 90°/--

BORE No: BH112B **PROJECT No: 86767.00** DATE: 18/5/2020 SHEET 2 OF 2

Г				Sampling & In Situ Testing					
	Depth	Description	phic		ر د			ater	Well
	(m)	oi Strata	Gra	Type	Dept	amp	Results & Comments	Ň	Details
╞	-	SANDSTONE: as above			10.12	S	PL(A) = 1.2		
- - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			С	11.04		PL(A) = 1.5		
	- 12				12.1		PL(A) = 1.3		12 End Cap
	- - 13 				13.0		PL(A) = 1.3		Bentonite Seal
	- - - - - - - - - - - - - - -			С	14.0		PL(A) = 1.5		14 Sand Back Fill
-									
-	- 15 15.0 - - - -	Bore discontinued at 15.0m - Target depth reached	1		-15.0-				
-	- 16 - 16 								-16
- 	- - - 17 - -								-17
	- - - - - - - - - - - - - - - - - - -								
	- - - 19 - - -								-19
-"	-								

RIG: Geoprobe TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Rapid drilling between 4.1-4.9m & 7.5-8.0m. 20% water loss at 9m. Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-12.0m Slotted PVC pipe, End cap 12.0m, Sand backfill 0-2.5m, Bentonite 2.5-5.5m, Sand filter 5.5-12.5m, Bentonite 12.5-13.0m, Backfill 13-15m

	SAMF	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	Р	Piston sample	PL(A	) Point load axial test Is(50) (MPa)			Develoo Douteoro
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	) Point load diametral test ls(50) (MPa)	1	1.	Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		11	Or start is I Fraincas at I Or sur durate
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics   Environment   Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333983 NORTHING: 6249283 DIP/AZIMUTH: 90°/--

BORE No: BH113 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

#### Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.15 0.15 FILL/SAND: fine to coarse, pale brown and brown, trace E* PID=9 ppm 0.25 fine to medium igneous rail ballast, trace coal, moist 0.4 0.4 FILL/CLAY: medium plasticity, red and pale grey, trace Е PID=1 ppm 0.5 medium gravel, w~PL 0.8 CLAY CI: medium plasticity, pale grey mottled red, trace fine to medium ironstone gravel, w<PL to w~PL, 0.9 Е PID=2 ppm apparently very stiff, residual 1.0 1 • 1 1.2 Е PID=8 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 3 - 3 -4 - 4

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.15m, Hand auger to 1.3m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD2/20200407 taken from 0.15-0.25m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

**Proposed Commercial Development** 

LOGGED: AS

CASING: Uncased

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample



SURFACE LEVEL: 15.5 AHD EASTING: 333984 NORTHING: 6249280 DIP/AZIMUTH: 90°/-- BORE No: BH114 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

## Sampling & In Situ Testing VWP Description Graphic Water Depth Log Sample Ъ Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.0 0.15 0.15 PID=10 ppm E FILL/SAND: fine to coarse, pale brown and brown, trace 0.2 0.2 ∖fine gravel and coal, moist 0.3 -0.3 FILL/CLAY: medium plasticity, brown, pale grey and red, with fine to coarse sand, trace fine gravel, igneous rail ballast, plastic and coal, w~PL, hydrocarbon odour Bore discontinued at 0.3m - Refusal on ballast 1 • 1 - 2 -2 3 - 3 -4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

**Proposed Commercial Development** 

DRILLER: AS/AMS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Diatube to 0.15m, Hand auger to 0.3m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)



SURFACE LEVEL: 15.5 AHD EASTING: 333981 NORTHING: 6249280 DIP/AZIMUTH: 90°/--

BORE No: BH115 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

#### Sampling & In Situ Testing VWP Graphic Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate <u>`</u>.`.\ Ľ 0.17 0.23 0.17 Е* PID<1 ppm FILL/SAND: fine to coarse, pale brown, moist PID=5 ppm 0.3 FILL/CLAY: medium plasticity, red and pale grey, with fine to coarse sand and fine gravel, trace fine to coarse igneous rail ballast and coal, w~PL 0.5 Е PID=1 ppm Below 0.5m: low plasticity, with fine to coarse ironstone 0.6 gravel 0.85 CLAY CI-CH: medium to high plasticity, pale grey mottled red, trace fine gravel, w<PL to w~PL, apparently very stiff, 0.9 Е PID=4 ppm 1.0 • 1 1 residual 1.2 Е Below 1.2m: pale grey, w<PL PID=1 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 3 - 3 •4 - 4

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.17m, Hand auger to 1.3m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD1/20200407 taken from 0.23-0.3m

CDE

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased





**SURFACE LEVEL:** 15.5 AHD **EASTING:** 333970 **NORTHING:** 6249305 **DIP/AZIMUTH:** 90°/-- BORE No: BH116 PROJECT No: 86767.03 DATE: 17/5/2020 SHEET 1 OF 1

Γ			Description	Jic		Sam	pling &	& In Situ Testing	2	VWP	
RL	(	epth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Constructio Details	n
-	-		CONCRETE: grey, 2-10mm igneous aggregate	1 2 2 2						-	
-	-	0.22	CLAY CI: medium plasticity, pale grey mottled pale brown and red, w <pl residual<="" td="" to="" w~pl,=""><td></td><td>E</td><td>0.22</td><td></td><td>PID=2 ppm</td><td></td><td>-</td><td></td></pl>		E	0.22		PID=2 ppm		-	
15	-					0.5				-	
-	-		Below 0.7m: trace fine to medium ironstone gravel			0.7		PID=2 ppm		-	
-	- -1		Below 1.0m: with medium ironstone gravel		E	1.0		PID=2 ppm		- -1 -	
-		1.2	Bore discontinued at 1.2m - Target depth reached			-1.2-				-	
-4										-	
-	-									-	
-	-2									- -2	
-	-									-	
-										-	
-	-									-	
-	-									-	
-	-3									-3	
-	-									-	
12											
-	-									-	
-	-4									-4	
-	-									-	
-	-									-	
	Ē										
[	[									-	

 RIG:
 Miniprobe
 DRILLER:
 Terratest

 TYPE OF BORING:
 Pushtube to 1.2m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 * Field replicate BD1/20200517 taken from 0.5-0.7m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased



SURFACE LEVEL: 15.5 AHD **EASTING:** 333968 NORTHING: 6249303 **DIP/AZIMUTH:** 90°/--

BORE No: BH117 **PROJECT No: 86767.03** DATE: 17/5/2020 SHEET 1 OF 1

Г		Description	0		Samp		& In Situ Testing		
	Depth	of	aphic og	a	£	<u>–</u>	5 11 0	ater	Construction
	· (m)	Strata	U U U	Тур	Dept	Samp	Comments	8	Details
F		CONCRETE: grey, 2-10mm igneous aggregate	۲. ۲.			0,			
l	- 0.3		<u>.,,,,,</u>		02				-
ŀ	0.2	FILL/Sandy CLAY: low plasticity, dark brown, fine to	$\bigvee$	<u>E</u>	0.25		PID=3 ppm		-
ł	-	hydrocarbon odour	$\langle / /$						-
-ť	2-	CLAY CI: medium plasticity, pale grey mottled pale brown and red. w~PL. residual							-
ĺ	[		$\langle / /$	E*	0.6		PID=2 ppm		-
ł	-		$\mathbb{V}/\mathbb{I}$		0.8				-
ł		Below 0.9m: pale grey mottled pale brown, w <pl< td=""><td>$\langle / /$</td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl<>	$\langle / /$						-
t	-1			E	1.0		DID=2 nnm		-1
	1.1	P Below 1.15m: with medium sand	V/	<b></b>	-1.2-		PID-2 ppm		
ł	-	Bore discontinued at 1.2m							-
ł	-	- Target depth reached							-
-1	-								-
Ī	[								
ŀ	-								-
ł	F								-
ł	-2								-2
t	[								
ļ	-								-
ł	-								-
-ť	2 -								-
t	Į								
ļ	-								-
ł	-								-
ł	-3								-3
t	[								
	-								-
ł	-								-
-5	<u>+</u> -								-
t	[								
	-								-
ł	-								-
ł	-4								-4
ŀ	ł								-
[	-								
ł	ł								+
÷	:+								+
ł	ł								
ĺ	[								
ŀ	+								
L									

**RIG:** Miniprobe **DRILLER:** Terratest TYPE OF BORING: Pushtube to 1.2m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** * Field replicate BD2/20200517 taken from 0.6-0.8m LOGGED: AS

CASING: Uncased

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAM	PLING	G&INSITUTESTING	LEG و	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_	_	_
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				
BI	LK Block sample	U,	Tube sample (x mm dia.)	PL([	D) Point load diametral test ls(50) (MPa)				
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		140		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	O to a to a loss	I Farmer		0
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotecnnics	Envir	onment I	Groundwate
-									

SURFACE LEVEL: 15.6 AHD 333946 EASTING: NORTHING: 6249321 DIP/AZIMUTH: 90°/--

BORE No: W1 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

#### Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata 0.0 ASPHALTIC CONCRETE 0.05 С FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a 0.25 0.25 dense condition 0.0 PL(A) = 1.6 0.3 12.12 CONCRETE: grey, with medium to coarse sub-rounded fragments of high strength sandstone, trace voids to 0.65m, abudant voids between 0.65m and 0.85m С À À <u>۵</u> ۵ 0.6 . | | | | | | | 44 С . `````````` 2.2 • 1 1 1.15 ∆` 1.2 Silty CLAY CI: medium plasticity, pale grey mottled dark red, w<PL, apparently stiff to very stiff, relict rock texture between 1.73-1.91m, residual (possibly extremely С weathered Ashfield Shale) 1.57 1.57 С 1.9 pp <200 - 2 2.0 -2 Below 2.0m, with irregular iron-cemented pockets and bands С 2.24 SANDSTONE: fine grained, orange-brown, iron-cemented, highly weathered, high strength, fractured, 2.4 -2.46 PL(A) = 1.5 Mittagong formation 2.46 Bore discontinued at 2.46m - Target depth reached 3 - 3 - 4 - 4 DRILLER: Nick Ruha

RIG: Hand Drill TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

Diatube (50mm) to 2.46m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Core drilling Disturbed sample Environmental sample CDE ₽



**SURFACE LEVEL:** 15.4 AHD **EASTING:** 333963 **NORTHING:** 6249315 **DIP/AZIMUTH:** 90°/-- BORE No: W2 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Γ		Description	U		San	npling &	& In Situ Testing		Well
R	Depth (m)	of	aphi Log	ЭС	Ę	ple	Results &	Vater	Construction
	(,	Strata	Ū	Туі	Dep	Sam	Comments	>	Details
-	0.0	5 ASPHALTIC CONCRETE	$\times$		0.0				-
-	0.1	⁵ FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С	0.35				-
-15	-	CONCRETE: grey, with medium to coarse sub-rounded fragments of high strength sandstone, trace voids	<u> </u>	C	0.55		PL(A) = 1.6		-
			× 0. 0. ×	0	0.8				-
-	-1 10	3	1.4.A.A.		0.0				- 1
-	- 1.1 -	Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, (possibly<br="" apparently="" residual="" stiff="" stiff,="" to="" very="">extremely weathered Ashfield Shale)</pl,>	/1/1/	С	1.15		PL(A) = 1.5		-
-14	1.3	3 SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, high strength, fractured, Mittagong formation	<u> </u>		-1.33-				-
-	-	Bore discontinued at 1.33m - Target depth reached							-
-	-								-
	-2								-2
13	-								-
-	-								-
-	-								-
-	-3								-3
	_								-
-5-	-								-
-	-								-
-									
	4								-
-1-	-								-
-	-								-
-	-								
-	-								

RIG: Hand Drill

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

**DRILLER:** Nick Ruha Diatube (50mm) to 1.33m

LOGGED: NB

CASING: NA

 TYPE OF BORING:
 Diatube (50mm) to 1.33m

 WATER OBSERVATIONS:
 No free groundwater observed whilst drilling

 REMARKS:
 Surface level taken from survey drawing provided

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PL(A) Point load axial test (s(50) (MPa))

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test (s(50) (MPa))

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shear vane (kPa)



SURFACE LEVEL: 13.4 AHD EASTING: 333954 NORTHING: 6249290 **DIP/AZIMUTH:** 70°/135°

BORE No: W3 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

## Sampling & In Situ Testing Description Well Graphic Log Water Depth Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata 0.0 SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, medium to high strength, fragmented, Mittagong С formation 0.46 С • 1 1 1.2 1.2 Bore discontinued at 1.2m - Target depth reached - 2 -2 3 - 3 4 - 4 DRILLER: Nick Ruha

RIG: Hand Drill TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

Diatube (50mm) to 1.2m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North



**SURFACE LEVEL:** 13.4 AHD **EASTING:** 333948 **NORTHING:** 6249282 **DIP/AZIMUTH:** 60°/135° BORE No: W4 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

		Description	ici		Sam	ipling &	& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
-	-	CONCRETE: grey, with fine to coarse sub-rounded and sub-angular fragments of high strength sandstone, trace voids	0.0.0.0.0 0.0.0.0	С	0.0		PL(A) = 1.5		-
13	-		0.0.0.0.0.	с					-
-	- 1 - 1	SANDSTONE: fine grained, orange-brown, highly weathered, medium to high strength, fractured, Mittagong formation		с	0.9				- 1 - 1 
12	1.57				1.5				-
-	-			С	1.7		PL(A) = 0.29		-
-	-2 2.12 2.19	SANDSTONE: fine to coarse grained, pale orange, highly		С	2.0		PL(A) = 0.99		-2
-	- 2.4	weathered, medium to high strength, fractured, Hawkesbury sandstone Bore discontinued at 2.4m - Target depth reached			-2.4-				-
-1-									-
-	-3								-3
	-								-
-	-								-
-9	-4								-4
-	-								-
-	-								-
-	-								-
RI T\	G: Hand (PE OF I	d Drill <b>DRILLER:</b> Nick Ruha BORING: Diatube (50mm) to 2.4m		LOC	GED	NB	CASING	9: N	A

WATER OBSERVATIONS: No free groundwater observed whilst drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample	PL(A	) Point load axial test Is(50) (MPa)		Nouslaa Dautuara
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	) Point load diametral test Is(50) (MPa)		A Douolas Parmers
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Or the balance of Free incoments of Organs durate
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics   Environment   Groundwater

#### Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

#### **Test Pits**

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

#### Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

#### **Continuous Spiral Flight Augers**

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

### **Non-core Rotary Drilling**

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

#### **Continuous Core Drilling**

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

#### **Standard Penetration Tests**

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

## Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

#### Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

# Soil Descriptions

## **Description and Classification Methods**

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

#### Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In the grained solis (>35% II	In	oils (>35% fines)	ne grained soils
-------------------------------	----	-------------------	------------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

## In coarse grained soils (>65% coarse)

with	clays	or	silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils	(>65% coarse)
- with coarser fraction	

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

## Soil Descriptions

#### **Cohesive Soils**

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

#### **Cohesionless Soils**

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

#### Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

**Moisture Condition – Coarse Grained Soils** For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

#### **Moisture Condition – Fine Grained Soils**

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

# Rock Descriptions

#### **Rock Strength**

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index  $Is_{(50)}$  is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to  $Is_{(50)}$ . It should be noted that the UCS to  $Is_{(50)}$  ratio varies significantly for different rock types and specific ratios should be determined for each site.

#### Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

## **Rock Descriptions**

#### **Degree of Fracturing**

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

#### **Rock Quality Designation**

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

#### **Stratification Spacing**

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

# Symbols & Abbreviations

#### Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

#### **Drilling or Excavation Methods**

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

#### Water

$\triangleright$	Water seep
$\bigtriangledown$	Water level

#### Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

#### **Description of Defects in Rock**

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

#### **Defect Type**

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

#### Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

#### Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

#### **Coating Descriptor**

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

#### Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

#### Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	verv rouah

#### Other

fg	fragmented
bnd	band
qtz	quartz

# Symbols & Abbreviations

## Graphic Symbols for Soil and Rock

#### General

oo	
A. A. A. A A. D. A. A	

Asphalt Road base

Concrete

Filling

#### Soils



Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel



Talus

## Sedimentary Rocks



## Limestone

#### Metamorphic Rocks

Slate, phyllite, schist

Quartzite

## Igneous Rocks



Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

อบเมอเ

Gneiss



Table F1: Summary of Soil Results – Metals, TRH, BTEX, PAH

			Metals							TRH							BT	rex		PAH				
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH OS- C10	TRH>C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyre ne TEQ	Total PAHs
Comple ID	Denth	PQL Seconda Data	4 ma/ka	0.4	1	1	1 ma/ka	0.1	1	1	25 malka	50 maña	25 maika	50 maka	100 ma/ka	100 molka	0.2 maña	0.5	1 malka	1 ma/ka	1 maika	0.05	0.5	0.05
Sample ID	Deput	Jampie Date	ngng	mawa	mana	inging	шулд	mana	individ	E	OP (20	20)	ing/ng	ngng	ing/ng	mgrkg	ngrig	119/19	mgrag	mana	ing/ng	mgmg	mg/ng	mgrkg
BH101	0.1 - 0.2 m	08/04/2020	4 3000 NA	<0.4	10	89 240000 NA	150	0.3	6 6000 NA	96 400000 NA	<25	<50	<25 260 NA	<50	210	<100	<0.2	<0.5	<1 N NA	<3 230 NA	<1 N NA	0.73	1.2	8.6
BH101/0.1-0.2 -	0.1 - 0.2 m	08/04/2020	<4	<0.4	8	56	160	0.3	6	120	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH101	0.9 - 1.0 m	08/04/2020	5	0.4	9	93	250	0.3	9	210	<25	<50	<25	<50	870	280	<0.2	<0.5	<1	-3	<1	2.5	3.5	20
BH102	15-16m	07/04/2020	3000 NA <4	<0.4	3600 NA	240000 NA 62	1500 NA 68	0.1	6000 NA	400000 NA 100	<25 NC NA	<50 NA	260 NA <25	<50	<100	<100	3 NA <0.2	<0.5	<1 NL NA	230 NA <3	<1 NL NA	0.1	40 NA <0.5	1.2
BH102	31.32m	07/04/2020	3000 NA 5	900 NA 1	3600 NA 10	240000 NA 180	1500 NA 160	730 NA 0.4	6000 NA 6	400000 NA 160	NC NA <25	NC NA <50	260 NA <25	NL NA <50	NC NA <100	<100 NA	3 NA <0.2	<0.5	NL NA <1	230 NA <3	NL NA <1	NC NA 0.1	40 NA <0.5	4000 NA 1.8
Dillos	0.1 - 0.2 m	077042020	3000 NA	900 NA <0.4	3600 NA 16	240000 NA 86	1500 NA 170	730 NA 1.3	6000 NA 23	400000 NA 540	NC NA <25	NC NA <50	260 NA <25	NL NA <50	NC NA <100	NC NA <100	3 NA <0.2	NL NA <0.5	NL NA	230 NA <3	NL NA <1	NC NA 0.05	40 NA <0.5	4000 NA
BH102	4.0 - 4.1 m	07/04/2020	3000 NA <4	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA 26	NC NA <25	NC NA	260 NA <25	NL NA <50	NC NA <100	NC NA <100	3 NA <0.2	NL NA <0.5	NL NA	230 NA	NL NA	NC NA	40 NA <0.5	4000 NA
BH102	4.9 - 5.0 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH103	1.0 - 1.1 m	08/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH103	2.0 - 2.1 m	08/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH103	2.9 - 3 m	16/04/2020	12 3000 NA	<0.4 900 NA	8 3600 NA	31 240000 NA	19 1500 NA	<0.1 730 NA	2 6000 NA	16 400000 NA	<25 NC NA	<50 NC NA	<25 630 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	ସ ଅ <u>ଅ</u>	<1 NL NA	⊲0.05 NC NA	<0.5 40 NA	<0.05 4000 NA
BH103	5.1 - 5.2 m	16/04/2020	<4 3000 NA	<0.4 900 NA	5 3600 NA	13 240000 NA	43 1500 NA	0.4 730 NA	2 6000 NA	17 400000 NA	<25 NC NA	<50 NC NA	<25 NL NA	<50	<100	<100 NC NA	<0.2 3 NA	<0.5 NL NA	<1 NL NA	<3 NL NA	<1 NL NA	0.2 NC NA	<0.5 40 NA	2.2 4000 NA
BH103	6.3 - 6.45 m	16/04/2020	<4 3000 NA	<0.4 900 NA	1 3600 NA	<1 240000 NA	<1 1500 NA	<0.1 730 NA	<1 6000 NA	<1 400000 NA	<25 NC NA	<50 NC NA	<25 NL NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<3 NL NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05
BH104	1.0 - 1.1 m	08/04/2020	5 3000 M4	<0.4	7 3600 MA	33 240000 NA	45 1500 NA	<0.1 730 NA	11 6000 NA	61 400000 NA	<25 NC N4	<50	<25 260 M4	<50	<100	<100	<0.2	<0.5	<1 N. N4	<3 230 NA	<1	<0.05	<0.5	0.52
BH104	1.4 - 1.5 m	14/04/2020	<4	<0.4	6	28	14	<0.1	7	42	<25	<50	<25	<50	<100	<100	<0.2	<0.5	4	-3	<1	0.53	0.7	6.1
BD2/140420	1.4 - 1.5 m	14/04/2020	8.3	<0.4	11	32	23	<0.1	9.9	56	<20	<50	<20	<50	<100	<100	<0.1	<0.1	<0.1	<0.3	<0.5	<0.5	<0.5	3
BH104	2.8 - 2.9 m	14/04/2020	11 NA	<0.4	7 7	240000 NA 27	1500 NA	<0.1	3	21	<25	<50	<250 NA <25	<50	<100	<100	<0.2	<0.5	<1	<3 NA	<1 NL NA	0.09	<0.5	0.56
BH105	0.05 - 0.1 m	08/04/2020	3000 NA 8	900 NA 0.6	3600 NA 13	240000 NA 93	1500 NA 280	730 NA	6000 NA 14	400000 NA 240	NC NA <25	<50 NA	630 NA <25	<50 NL NA	NC NA 330	<100 NA	3 NA <0.2	<0.5	NL NA <1	NL NA <3	<1 NL NA	2 NC NA	40 NA 2.9	4000 NA 17
BD4070420	0.02 0.2	08/04/2020	3000 NA 9	900 NA 0.7	3600 NA 14	240000 NA 99	1500 NA 300	730 NA 0.8	6000 NA 11	400000 NA 260	NC NA <25	NC NA <50	260 NA <25	NL NA <50	NC NA 170	NC NA <100	3 NA <0.2	NL NA <0.5	NL NA <1	230 NA <3	NL NA <1	NC NA 1.8	40 NA 2.5	4000 NA 17
BD1/070420	0.23 - 0.3 11	08/04/2020	3000 NA 10	900 NA 0.8	3600 NA 20	240000 NA 110	1500 NA 460	730 NA 1.3	6000 NA 17	400000 NA 400	NC NA	NC NA	260 NA NT	NL NA NT	NC NA NT	NC NA NT	3 NA NT	NL NA	NL NA NT	230 NA NT	NL NA NT	NC NA NT	40 NA NT	4000 NA NT
BD1/0/04206	0.23 - 0.3 m	08/04/2020	3000 NA 25	900 NA <0.4	3600 NA 14	240000 NA 74	1500 NA 100	730 NA 0.2	6000 NA	400000 NA 780	NC NA <25	NC NA 87	260 NA <25	NL NA 87	NC NA 1600	NC NA 380	3 NA <0.2	NL NA <0.5	NL NA <1	230 NA <3	NL NA <1	NC NA 28	40 NA 40	4000 NA 320
BH106	0.2 - 0.3 m	07/04/2020	3000 NA	900 NA <0.4	3600 NA 43	240000 NA	1500 NA 610	730 NA 0.7	6000 NA	400000 NA	NC NA	NC NA 240	260 NA <25	NL NA 230	NC NA 3600	NC NA 790	3 NA <0.2	NL NA <0.5	NL NA	230 NA <3	NL NA 2	NC NA 120	40 NA	4000 NA
BH106 BH106/0 2- 04 -	0.3 - 0.4 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA 350	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
[TRIPLICATE]	0.3 - 0.4 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH106	0.9 - 1.0 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH107B	0.4 - 0.5 m	16/05/2020	54 3000 NA	900 NA	3600 NA	25 240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BD1/20200516	0.4 - 0.5 m	16/05/2020	<4 3000 NA	<0.4 900 NA	12 3600 NA	46 240000 NA	52 1500 NA	0.2 730 NA	7 6000 NA	81 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<3 230 NA	<1 NL NA	1.8 NC NA	2.7 40 NA	18 4000 NA
BH107B	1.4 - 1.5 m	16/05/2020	<4 3000 NA	<0.4 900 NA	7 3600 NA	11 240000 NA	11 1500 NA	<0.1 730 NA	6 6000 NA	15 400000 NA	<25 NC NA	<50 NC NA	<25 370 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<3 NL NA	<1 NL NA	0.3 NC NA	<0.5 40 NA	2.8 4000 NA
BH108	0.23 - 0.25 m	17/05/2020	5 3000 NA	<0.4 900 NA	14 3600 NA	11 240000 NA	15 1500 NA	<0.1 730 NA	<1 6000 NA	4 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<3 230 NA	<1 NL NA	2.7 NC NA	3.8 40 NA	23 4000 NA
BH109B	0.4 - 0.5 m	17/05/2020	<4 3000 NA	<0.4	9 3600 NA	9 240000 NA	19 1500 NA	<0.1 730 NA	<1 6000 NA	2 400000 NA	<25	<50	<25 260 NA	<50	<100	<100	<0.2	<0.5	<1 N. NA	<3 230 NA	<1	0.4	<0.5	4.9 4000 NA
BH110	0.5 - 0.5 m	5/21/2020	43	<0.4	10	9 240000 NA	30	<0.1	3	19 19	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3 220 NA	<1	1.1	2.1	13
BH111	0.4 - 0.5 m	5/19/2020	<4	<0.4	5	6	10	<0.1	3	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3 230 N*	<1	0.2	<0.5	<0.5
BH111	1.3 · 1.4 m	5/19/2020	<4	<0.4	16	60	330	1	16	180	<25	<50	<25	<50	220	<100	<0.2	<0.5	4	<3	<1	5.7	8.4	8.4
BH112B	0.6 - 0.7 m	18/05/2020		<0.4	11	15	21	0.3	3000 NA	12 NA	<25	<50	<25 NA	<50	650	310	<0.2	<0.5	<1	<3 NA	1 1	5.1	7.5	85
BH112B	1.2 · 1.4 m	13/05/2020	3000 NA <4	<0.4	3600 NA 3	240000 NA 16	1500 NA	730 NA <0.1	8000 NA	400000 NA 11	NC NA <25	<50 NA	260 NA <25	<50 NL	<100	<100	3 NA <0.2	<0.5	<1 NL NA	230 NA <3	<1 NL NA	2.5	40 NA 3.5	4000 NA 36
BH113	0.15 - 0.25 m	07/04/2020	26 NA	900 NA <0.4	3600 NA	240000 NA 40	1500 NA 44	730 NA <0.1	6000 NA	400000 NA 310	NC NA <25	-50	370 NA <25	<50	NC NA 790	NC NA 220	3 NA <0.2	<0.5	NL NA <1	NL NA <3	NL NA <1	NC NA 12	40 NA 17	4000 NA 150
BD2/070420	0.05-0.1 m	07/04/2020	3000 NA 10	900 NA <0.4	3600 NA 9	240000 NA 43	1500 NA 69	730 NA 0.1	6000 NA	400000 NA 500	NC NA <25	NC NA <50	260 NA <25	NL NA <50	NC NA 760	NC NA 180	3 NA <0.2	NL NA <0.5	NL NA <1	230 NA <3	NL NA <1	NC NA 14	40 NA 20	4000 NA 180
BLAAD	04.05-	07/04/2020	3000 NA 6	900 NA <0.4	3600 NA 18	240000 NA 19	1500 NA 23	730 NA <0.1	6000 NA <1	400000 NA 8	NC NA <25	NC NA <50	260 NA <25	NL NA <50	NC NA <100	NC NA <100	3 NA <0.2	NL NA <0.5	NL NA <1	230 NA <3	NL NA <1	NC NA 1.2	40 NA 1.7	4000 NA 15
BH113	0.4 - U.5 M	07/04/2020	3000 NA NT	900 NA NT	3600 NA NT	240000 NA NT	1500 NA NT	730 NA NT	6000 NA NT	400000 NA NT	NC NA NT	NC NA	260 NA NT	NL NA NT	NC NA	NC NA NT	3 NA NT	NL NA NT	NL NA	230 NA NT	NL NA NT	NC NA 0.3	40 NA <0.5	4000 NA 3.8
BH113	0.9 - 1.0 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA <25	NC NA 220	260 NA	NL NA 220	NC NA	NC NA 330	3 NA	NL NA <0.5	NL NA	230 NA	NL NA	NC NA 67	40 NA	4000 NA 860
BH114	0.15 - 0.2 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA 310	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA 31	40 NA	4000 NA 470
BH114	0.2 - 0.3 m	07/04/2020	3000 NA	900 NA	3600 NA	240000 NA	1500 NA	730 NA	6000 NA	400000 NA	NCNA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA
BH115	0.23 - 0.3 m	07/04/2020	ы 3000 NA	<0.4 900 NA	12 3600 NA	14 240000 NA	24 1500 NA	-d0.1 730 NA	6000 NA	21 400000 NA	NC NA	NC NA	<25 260 NA	NL NA	NC NA	NC NA	<0.2 3 NA	<u.5< td=""><td>NL NA</td><td>&lt;3 230 NA</td><td>&lt;1 NL NA</td><td>NC NA</td><td>38 40 NA</td><td>440 4000 NA</td></u.5<>	NL NA	<3 230 NA	<1 NL NA	NC NA	38 40 NA	440 4000 NA
BH115/0.23-0.3 - [TRIPLICATE]	0.23 - 0.3 m	07/04/2020	100 3000 NA	<0.4 900 NA	14 3600 NA	85 240000 NA	38 1500 NA	<0.1 730 NA	3 6000 NA	110 400000 NA	NT NC NA	NT NC NA	NT 260 NA	NT NL NA	NT NC NA	NT NC NA	NT 3 NA	NT NL NA	NT NL NA	NT 230 NA	NT NL NA	NT NC NA	NT 40 NA	NT 4000 NA
BH115	0.5 - 0.6 m	07/04/2020	11 3000 NA	<0.4 900 NA	21 3600 NA	16 240000 NA	20 1500 NA	<0.1 730 NA	2 6000 NA	11 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<3 230 NA	<1 NL NA	1.8 NC NA	2.5 40 NA	22 4000 NA
BH115	0.9 - 1.0 m	07/04/2020	NT 3000 MA	NT	NT 3600 NA	NT 240000 NA	NT	NT 730 NA	NT 6000 NA	NT 400000 NA	NT NC NA	NT NC NA	NT 260 NA	NT	NT NC NA	NT NC N4	NT 3 N4	NT NL NA	NT NL NA	NT 230 NA	NT	0.05	<0.5	0.4 4000 NA
BH116	0.5 - 0.7 m	17/05/2020	<4 3000 NA	<0.4 900 NA	6 3600 NA	5 240000 NA	12 1500 NA	<0.1 730 NA	<1 6000 NA	1 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5		<3 230 NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05
BD1/20200517	0.5 - 0.7 m	17/05/2020	3.6 3000 NA	<0.4 900 NA	8.2 3600 NA	9.9 240000 NA	16 1500 NA	<0.1 730 NA	<5 6000 NA	<5 400000 NA	<20 NC NA	<50 NC NA	<20 260 NA	<50	<100 NC NA	<100 NC NA	<0.1 3 NA	<0.1	<0.1	<0.3 230 NA	<0.5	<0.5	<0.5	<0.5
BH117	0.2 - 0.25 m	17/05/2020	8	<0.4	20	15	16	<0.1	2	7	<25	140	<25	120	1700	340	<0.2	<0.5	4	-3	16	49	71	770

	DP (2019b)																								
BH1	3 - 3.5 m	10/07/2019	<4 3000 NA	<0.4 900 NA	2 3600 N	8 240000	NA 1	90 1500 NA	0.9 730 NA	3 6000 NA	140 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05 4000 NA
BH1	3.8 - 4 m	10/07/2019	<4 3000 NA	<0.4 900 NA	<1 3600 N	A 240000	NA 1	1 1500 NA	<0.1 730 NA	<1 6000 NA	23 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05 4000 NA
BH2	1.5 - 1.6 m	10/07/2019	<4 3000 NA	<0.4 900 NA	5 3600 N	3 A 240000	NA 1	24 1500 NA	<0.1 730 NA	1 6000 NA	4 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	0.1 NC NA	<0.5 40 NA	1.6 4000 NA
BH2	4.5 - 4.6 m	10/07/2019	12 3000 NA	<0.4 900 NA	8 3600 N	21 A 240000	NA 1	24 1500 NA	<0.1 730 NA	2 6000 NA	29 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	0.2	<0.5 40 NA	1.6 4000 NA
BH3	0.2 · 0.3 m	12/07/2019	6 3000 NA	<0.4 900 NA	10 3600 N	1 ⁻ A 240000	NA 1	48 1500 NA	0.1 730 NA	2 6000 NA	55 400000 NA	<25 NC NA	75 NC NA	<25 260 NA	75 NL NA	1200 NC NA	220 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	1.2 NL NA	29 NC NA	42 40 NA	370 4000 NA
BH3	0.7 · 0.8 m	12/07/2019	9 3000 NA	<0.4 900 NA	9 3600 N	9 240000	NA 1	45 1500 NA	<0.1 730 NA	2 6000 NA	35 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	200 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	4.5 NC NA	6.3 40 NA	53 4000 NA
BH3/0.7-0.8 - [TRIPLICATE]	0.7 · 0.8 m	12/07/2019	10 3000 NA	<0.4 900 NA	10 3600 N	11 A 240000	NA 1	16 1500 NA	<0.1 730 NA	2 6000 NA	23 400000 NA	NT NC NA	NT NC NA	NT 260 NA	NT NL NA	NT NC NA	NT NC NA	NT 3 NA	NT NL NA	NT NL NA	NT 230 NA	NT NL NA	NT NC NA	NT 40 NA	NT 4000 NA
BH4	0.3 · 0.4 m	12/07/2019	8 3000 NA	<0.4 900 NA	4 3600 N	9 A 240000	NA 1	33 1500 NA	<0.1 730 NA	1 6000 NA	29 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	0.1 NC NA	<0.5 40 NA	0.57 4000 NA
BH4	1.0 - 1.1 m	12/07/2019	10 3000 NA	<0.4 900 NA	9 3600 N	1: A 240000	NA 1	49 1500 NA	0.1 730 NA	1 6000 NA	8 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	0.06 NC NA	<0.5 40 NA	0.06 4000 NA
BH5	0.35 - 0.4 m	13/07/2019	<4 3000 NA	<0.4 900 NA	5 3600 N	71 A 240000	I NA 1	8 1500 NA	0.1 730 NA	4 6000 NA	35 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	1200 NC NA	320 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	10 NC NA	14 40 NA	100 4000 NA
BH6	0.2 · 0.3 m	14/07/2019	7 3000 NA	<0.4 900 NA	17 3600 N	1 A 240000	NA 1	30 1500 NA	0.2 730 NA	2 6000 NA	15 400000 NA	<25 NC NA	360 NC NA	<25 260 NA	280	1400 NC NA	200 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	87 NL NA	23 NC NA	34 40 NA	640 4000 NA
BH7	1.0 · 1.1 m	12/07/2019	<4 3000 NA	<0.4 900 NA	2 3600 N	2 240000	NA 1	4 1500 NA	<0.1 730 NA	1 6000 NA	30 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	<0.05	<0.5 40 NA	0.1 4000 NA
BH7	1.4 · 1.5 m	13/07/2019	<4 3000 NA	<0.4 900 NA	3 3600 N	2 240000	NA 1	2 1500 NA	<0.1 730 NA	1 6000 NA	11 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05 4000 NA
BD/120719	1.4 · 1.5 m	12/07/2019	<4 3000 NA	<0.4 900 NA	8 3600 N	1: A 240000	I NA 1	21	<0.1 730 NA	5 6000 NA	21 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	1.6 NC NA	2.3 40 NA	16 4000 NA
BT1/2090713	1.4 · 1.5 m	12/07/2019	<2 3000 NA	<0.4 900 NA	5.5 3600 N	d 240000	i NA 1	5.1 1500 NA	<0.1 730 NA	<5 6000 NA	30 400000 NA	<20 NC NA	<50 NC NA	<20 260 NA	<50 NL NA	<100 NC NA	<100 NC NA	<0.1 3 NA	<0.1	<0.1	<0.3 230 NA	<0.5	<0.5	<0.5 40 NA	<0.5 4000 NA
BH7	2.0 · 2.1 m	13/07/2019	<4 3000 NA	<0.4 900 NA	8 3600 N	7 A 240000	NA 1	7 1500 NA	<0.1 730 NA	3 6000 NA	16 400000 NA	<25 NC NA	<50 NC NA	<25 260 NA	<50	<100 NC NA	<100 NC NA	<0.2 3 NA	<0.5	<1 NL NA	<1 230 NA	<1 NL NA	<0.05	<0.5 40 NA	<0.05 4000 NA
BH8	0.2 - 0.3 m	14/07/2019	4 3000 NA	<0.4	9 3600 N	51 A 240000	NA 1	33	0.1	12 6000 NA	33 400000 NA	<25	<50	<25 260 NA	<50	<100	<100	<0.2	<0.5	<1	<1 230 NA	<1 N. NA	1.2	1.7 40 NA	11 4000 NA
BH9	0.35 · 0.45 m	12/07/2019	<4	<0.4	8	3		8	<0.1	2	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	4	<1	<1	0.2	<0.5	2.6
BH9	0.65 - 0.75 m	12/07/2019	18	<0.4	23	A 240000 9	NA 1	15 NA	0.2	1 1	400000 NA 7	NU NA <25	<50 NC NA	<250 NA	<50	<100	<100	3 NA <0.2	<0.5	<1	230 NA <1	<1 NL NA	<0.05	40 NA <0.5	4000 NA <0.05
			3000 NA	900 NA	3600 N	A 240000	NA 1	1500 NA	730 NA	6000 NA	400000 NA	NC NA	NC NA	260 NA	NL NA	NC NA	NC NA	3 NA	NL NA	NL NA	230 NA	NL NA	NC NA	40 NA	4000 NA



HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceen

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes: HIL/HSL/DC NEPC, Schedule B1 - HIL D, HSL D, DC HSL D NEPC; Schedule B1 - ML D, HSL D, DC HSL D NEPC; Schedule B1 - ML C/Ind QA/QC replicate of sample listed directly below the primary sample reported naphthalene laboratory result obtained from BTEXN suite criteria applies to DDT only ML ь с



Table F1: Summary of Soil Results - Phenol, OCP, OPP, PCB, Asbestos

			Phenol						OCP						OPP	PCB		Asbestos	
			Phenol	DDT+DDE+DDD	QQQ	DDE	DOT	Aldrin & Dieldrin	Total Chiordane	Total Endosultan	Endrin	Heptachlor	Hexachioroben zene	Methoxychlor	Chlor pyriphos	Total PCB	Asbestos ID in soli >0.1g/kg	Trace Analysis	Asbestos (50 g)
0	Durt	PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Sample ID	Depth	Sample Date	iiig/kg	iligikg	iligikg	iligikg	ingatg	mg/kg	(0000	ing/kg	mg/kg	mg/kg	iiig/kg	iligikg	nigikg	mg/kg		<u> </u>	<u> </u>
								DF	' (2020	)									
BH101	0.1 - 0.2 m	08/04/2020	<5 660 NA	<0.1 3600 NA	<0.1 NC NA	<0.1 NC NA	<0.1 NC NA	<0.1 45 NA	<0.1 530 NA	<0.1 2000 NA	<0.1 100 NA	<0.1 50 NA	<0.1 80 NA	<0.1 2500 NA	<0.1 2000 NA	<0.1 7 NA	NAD	NAD	NAD
BH101/0.1-0.2 - ITRIPLICATE1	0.1 - 0.2 m	08/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH101	0.9 - 1.0 m	08/04/2020	-5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH102	1.5 - 1.6 m	07/04/2020	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH102	3.1 - 3.2 m	07/04/2020	NT NT	NT	NC NA	NC NA	NC NA	NT NT	NT	NT NT	NT NT	NT NT	NT	NT NT	NT	NT	NAD	NAD	NAD
BH102	4.0 - 4.1 m	07/04/2020	NT NT	3600 NA	NC NA	NC NA	NC NA	45 NA NT	NT	2000 NA NT	100 NA NT	50 NA	NT NT	2500 NA NT	NT	7 NA NT	NAD	NAD	NAD
BH102	4.9 - 5.0 m	07/04/2020	NT NT	3600 NA	NC NA	NC NA	NC NA	45 NA NT	NT NT	2000 NA NT	100 NA NT	50 NA	NT NT	2500 NA NT	NT	7 NA NT	NT	NT	NT
BH103	10-11m	08/04/2020	660 NA	3600 NA <0.1	<0.1	<0.1	<0.1	45 NA <0.1	530 NA <0.1	2000 NA ⊲0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	NAD	NAD	NAD
BH402	20.21m	08/04/2020	660 NA NT	3600 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD		
Dilloo	2.0 - 2.1 11	4010412020	660 NA <5	3500 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	1000	100	1000
BH103	2.9-3 m	16/04/2020	660 NA NT	3600 NA NT	NC NA	NC NA	NC NA	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA	NAD	NAD	NAD
BH103	6.1 - 6.2 m	16/04/2020	660 NA NT	3500 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD	NAD	NAD
DITIU3	0.3 ° 0.45 m	10/04/2020	660 NA <5	3500 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	NI	NI	nd .
BH104	1.0 - 1.1 m	08/04/2020	660 NA	3500 NA	NC NA	NC NA	NC NA	45 NA NT	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD
BH104	1.4 - 1.5 m	14/04/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD
BD2/140420	1.4 - 1.5 m	14/04/2020	660 NA	191 3600 NA	NC NA	NC NA		45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	191 2500 NA	NI 2000 NA	7 NA	NT	NT	NT
BH104	2.8 - 2.9 m	14/04/2020	-65 660 NA	<0.1 3600 NA	<0.1 NC NA	<0.1 NC NA	<0.1 NC NA	<0.1 45 NA	<0.1 530 NA	<0.1 2000 NA	<0.1 100 NA	<0.1 50 NA	<0.1 80 NA	<0.1 2500 NA	<0.1 2000 NA	<0.1 7 NA	NAD	NAD	NAD
BH105	0.05 - 0.1 m	08/04/2020	NT 660 NA	NT 3600 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BD1/070420	0.05 - 0.1 m	08/04/2020	NT 650 NA	NT 3500 NA	NT NG NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NT	NT	NT
BD1/070420b	0.05 - 0.1 m	08/04/2020	NT NA	NT	NT	NT	NT	NT	NT	NT	NT NA	NT NA	NT NA	NT	NT	NT	NT	NT	NT
BH106	0.2 - 0.3 m	07/04/2020	NT NA	NT	NT NG NA	NT NG NA	NT NG NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NT	NT	NT
BH106	0.3 - 0.4 m	07/04/2020	-65 650 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH106/0.304 - ITRIPLICATE1	0.3 - 0.4 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106	0.9 - 1.0 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH107B	0.4 - 0.5 m	16/05/2020	<5 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BD1/20200516	0.4 - 0.5 m	16/05/2020	660 NA NT	3600 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	NT 08	2500 NA NT	2000 NA NT	7 NA NT	NT	NT	NT
BH107B	14-15m	16/05/2020	660 NA NT	3600 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD	NAD	NAD
Dilloo	0.00 0.05	12/05/2020	660 NA NT	3600 NA NT	NC NA NT	NC NA	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT			
BPII08	0.23 - 0.25 m	17/05/2020	660 NA	3600 NA <0.1	NC NA	NC NA	NC NA <0.1	45 NA	530 NA	2000 NA ⊲0.1	100 NA <0.1	50 NA	80 NA	2500 NA <0.1	2000 NA <0.1	7 NA	NI	NI	NI
BH109B	0.4 - 0.5 m	17/05/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NT	NT	NT
BH110	0.5 - 0.5 m	5/21/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NT	NT	NT
BH111	0.4 - 0.5 m	5/19/2020	660 NA	<0.1 3600 NA	KU.1	<u.1 NC NA</u.1 	<u.1 NC NA</u.1 	<0.1 45 NA	<0.1 530 NA	⊲0.1 2000 NA	<0.1 100 NA	<0.1 50 NA	<0.1 80 NA	40.1 2500 NA	<0.1 2000 NA	<0.1 7 NA	NT	NT	NT
BH111	1.3 - 1.4 m	5/19/2020	NT 660 NA	NT 3600 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BH112B	0.6 - 0.7 m	18/05/2020	NT 660 NA	NT 3600 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BH112B	1.2 - 1.4 m	13/05/2020	NT 660 NA	NT 3600 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NT	NT	NT
BH113	0.15 - 0.25 m	07/04/2020	NT 650 NA	NT 3500 NA	NT NG NA			NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 N4	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BD2/070420	0.15 - 0.25 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT STOLEN	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH113	0.4 - 0.5 m	07/04/2020	<5 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH113	0.9 - 1.0 m	07/04/2020	NT NT	3600 NA NT	NC NA	NC NA	NC NA	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NT	NT	NT
BH114	0.15 - 0.2 m	07/04/2020	NT NT	3600 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD	NAD	NAD
BH114	02-03-	07/04/2020	660 NA <5	3600 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA ⊲0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	NAD	NAD	NAD
DIT14	0.22 0.3 m	07/04/2020	660 NA	3600 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA ⊲0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	1010		1010
BH115 BH115/0.23-0 3	u.23 - 0.3 m	07/04/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD
- [TRIPLICATE]	0.23 - 0.3 m	07/04/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NT	NT	NT
BH115	0.5 - 0.6 m	07/04/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD
BH115	0.9 - 1.0 m	07/04/2020	660 NA	3500 NA				45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NT	NT	NT
BH116	0.5 - 0.7 m	17/05/2020	NT 660 NA	NT 3600 NA				NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	7 NA	NT	NT	NT
BD1/20200517	0.5 - 0.7 m	17/05/2020	660 NA	NI 3600 NA				45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	NI 2500 NA	NI 2000 NA	7 NA	NT	NT	NT
BH117	0.2 - 0.25 m	17/05/2020	660 NA	80.1 3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD

								DP	(2019	b)									
BH1	3 - 3.5 m	10/07/2019	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH1	3.8 - 4 m	10/07/2019	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD
BH2	1.5 - 1.6 m	10/07/2019	<5 650 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH2	4.5 - 4.6 m	10/07/2019	NT 650 NA	NT	NT NC NA			NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT	NT 7 NA	NAD	NAD	NAD
BH3	0.2 - 0.3 m	12/07/2019	NT	NT	NT			NT 45 NA	NT	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT	NT	NT 7 NA	NAD	NAD	NAD
BH3	0.7 - 0.8 m	12/07/2019	<5 660 NA	<0.1	<0.1	<0.1	<0.1	<0.1 45 NA	<0.1	<0.1 2000 NA	<0.1	<0.1	<0.1	<0.1 2500 NA	<0.1 2000 NA	<0.5 7 NA	NAD	NAD	NAD
BH3/0.7-0.8 - [TRIPLICATE]	0.7 - 0.8 m	12/07/2019	NT 650 NA	NT 3500 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NT	NT	NT
BH4	0.3 - 0.4 m	12/07/2019	<5 660 NA	<0.1	<0.1	<0.1	<0.1	<0.1 45 NA	<0.1	<0.1 2000 NA	<0.1	<0.1	<0.1	<0.1 2500 NA	<0.1 2000 NA	<0.1	NAD	NAD	NAD
BH4	1.0 - 1.1 m	12/07/2019	NT 660 NA	NT 3600 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BH5	0.35 - 0.4 m	13/07/2019	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NAD	NAD	NAD
BH6	0.2 - 0.3 m	14/07/2019	NT 650 NA	NT 3600 NA	NT NG NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BH7	1.0 - 1.1 m	12/07/2019	<5 660 NA	<0.1 3600 NA	<0.1	<0.1	<0.1	<0.1 45 NA	<0.1	<0.1 2000 NA	<0.1	<0.1	<0.1	<0.1 2500 NA	<0.1 2000 NA	<0.1 7 NA	NAD	NAD	NAD
BH7	1.4 - 1.5 m	13/07/2019	<5 650 NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BD/120719	1.4 - 1.5 m	12/07/2019	NT 650 NA	NT 3500 NA	NT NC NA	NT NC NA	NT NG NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BT1/2090713	1.4 - 1.5 m	12/07/2019	NT 650 NA	NT 3500 NA	NT NC NA	NT NC NA	NT NC NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NT	NT	NT
BH7	2.0 - 2.1 m	13/07/2019	NT 660 NA	NT 3500 NA	NT NG NA	NT NC NA	NT NG NA	NT 45 NA	NT 530 NA	NT 2000 NA	NT 100 NA	NT 50 NA	NT 80 NA	NT 2500 NA	NT 2000 NA	NT 7 NA	NAD	NAD	NAD
BH8	0.2 - 0.3 m	14/07/2019	-5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH9	0.35 - 0.45 m	12/07/2019	NT	NT	NT	NT NA	NT NA	NT NT	NT NT	NT	NT	NT	NT NT	NT NT	NT	NT	NAD	NAD	NAD
			660 NA NT	3600 NA NT	NC NA NT	NC NA NT	NC NA NT	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT			
BH9	0.65 - 0.75 m	12/07/2019	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD

Lab result ISL value EIL/ESL value HIL/HSL exceedance 📕 EIL/ESL exceedance = HIL/HSL and EIL/ESL exceedance = ML exceedance = ML and HIL/HSL or EIL/ESL exceedance Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes: HIL/HSL/DC NEPC, Schedule B1 - HIL D, HSL D, DC HSL D NEPC, Schedule B1 - ML C/nd OA/OC replicated sample listed directly below the primary sample reported naphthalene laboratory result obtained from BTEXN suite criteria applies to DDT only ML а

ь

#### 

_

Table F3: Summary of Laboratory Results - VOC

		PQL	11112 Neraddocoetia Fe 1115 Februethare	- 1125 httdb:rotha	1/LB Vichlocothane	dicHorotheree	Dicherothere 1.1	1,1,3,5 I Didecterren	- 13.3- Mithersprepan	- Niddorderzen	1,2,4476mePyl benance	12 directors (hiroproprie	disconditione 1.3 distributione	e 12 dellecentere	1.2 detecoprotere	1,3,5 trimetry f	- deherdenen	- (1.) dehergequene 1.4	- dichloroberaten - 12	dehoroproparie	<ul> <li>3-chlorold une</li> <li>4-chlorold une</li> </ul>	4 incpropy	Conserve and	Increase Advector	tronodictioner	- terretorn	a Brenomethere	carbon Letrathoride	. Renochtordan area	- Chlocosthare	- Chérofern	- Olicconstante (b.1.2-	dellocathere cis-1,3- diddocopropen	Cuttorere	d brow of blocon	disce or alian	Dichlorodith.com	hearthfordean dane	tecpropy benale ne (current)	- nbuty becare	- nerced becare actesy	benatrie Brymene	writers) becare	Mradicroste re	trans-1.2 doll-contrans	- ddkropropan e 13.3-	- trictionatiyien e	Viral Charles	
Sample D	Depth	Sampie Date	ngkg ngkg	maha	ngkg	nging ng	olo no	ko mako	maka	ngka	mgkg	ngkg ng	ing ngh	a ngka	noko	maka	mgkg	ngkg m	oka na	Ag n	gilg ngil	a ngk	DP (2	020)	e meke	maka	ngkg	ngkg	maka	pign	naka	naka ni	40 mg4	ia na	oko moko	mgkg	ngkg	nglig i	nglig	nota	noto no	940 mg/	ka maka	a maka	mgkg	ngkg n	ngka ni	Ag mgi	44
BHR01 0. BHR010.10.2- 0.0000.00000 0.	1-0.2 m	08042020	NT NT NT NT	NT NT	NT NT	NP 1			NT NT	NT NT	NT NT	NT N NT N		NT NT		MT 100	MT MT	NT NT	NT P	<u>~</u>	NT NT	Ne Ne	× ×	× ×			NT NT	NT NT	NT NT NT	NT NT	NT NT			NA -	α NT NR <mark>× NR</mark> α NT	NT NT	NT NT	NT NT	NT NT	NT				NT NT	NT NT	NT NT			-
BHED 0	9-1.0 m	08042020	NC NA NC N NT NT NC NA NC N	NT NT	NT NT NT			NA NC NA T NT T NT	NT NT NT	NT NA	NT NT NT	NT N	T NT			MT 14	NT 18.	NT NT NT	NA NC NT 9 NA NC	M NC	NT NT NT NT	N <u>~</u> N <u>~</u> N	× ×	× ×	NA NO NO	NT NT	NT NT	NT NT NT	NT NT NT	NT NT NT	NE NA A			M ×	α ΝΑ α ΝΤ ΝΑ ⊻ ΝΑ α ΝΤ	NT NT NT	NT N NT N	NT NT	NT NT	NT NT			NR × NT	0. <u>XC NO</u> NT NT	NT NA	NT NT NT	NT T		-
BHRC2 3	1-3.2 m	07042020	NC NA NC N NT NT NC NA NC N NT NT	NT NT	NT NT NT	NT N		NA NC NA NA NC NA	NT NA I	NT NA	NT NT NT	NC NA NC NT N NC NA NC NT N	T NT			<u>м</u> м м	NT NA.	NT NC	NA NC NT 9 NA NC NT 9	M NC	NT NT NT NT NT NT	NA 150 NA 150 NA 150	M ×	M 100	NA <u>NC</u> NA NA <u>NC</u> NA	NT NT NT	NT NT NT	NT NT	NC M NT NC M	NT NT	NE NA A		NA 15	NA 15	NA         NC         NA           σ         NT         NA           NA         NC         NA           σ         NT         NA	NT NT NT	NT N	NT N	NT NT	NT N			NR. × NT	0. × N	NT NA	NT NC NA NC	NT T	M 14	*
8HR02 4	9-50m	02042000	NC NA NC N NT NT NC NA NC N	NT NT		NE N		NA NE NA	NT NA	NT NA	NT NA	NT N				<u>ж</u> м м	NT NA	NT NC	NA NC	M 10		N <u>×</u> N ×	* <u>*</u>	× ×		NT NA	NT NA	NT NA	NC M NT	NT NT			NA <u>S</u>	NA ×	на <mark>жо</mark> ма. ат — мт ма. <mark>мо</mark> ма.	NT NT	NT N		NT N	с м м м с м м			NR × I		NT NA	NT N			-
BHIOS 1	0-1.1 m 0-2.1 m	08042020	NC NA NC N NT NT NC NA NC N	NT N	NT N		NA 14	NA 10 10	NT NA	NT NA	NT N.	NT N				<u>ж</u> м. мт м м.	× №. M ²	NT N	NR HE	M 15		N <u>×</u> N	* <u>*</u>	* <u>*</u>	NA 10 N	NT NO.	NT N	NT N	NT N	NT N			NA <u>*</u>	NA 🛫	на <mark>на на</mark> ат нт на <u>нт</u> на	NT N	с м н кт		NT NA	NT		- MA - MA - MA	NR X		NT N.	NT N			-
8H800 5 8H800 5	1-52m	19042020 19042020	NT NT NC NA NC N NT NT	NT NT		N X X			NT NT	NT NT	NT NT NT	NT N NC NA NC NT N	T NT			<u>~ w</u>	MT 14	NT NT	NT 3	M 10	NT NT NT NT	N <u>~</u> N	* *	× ×		NT NT	NT NT	NT NT					- M	* *	α ΝΤ ΝΑ ΝΟ ΝΑ α ΝΤ ΝΑ ΝΟ ΝΑ	NT NT		NT N		N			NR ×		лт 			<u></u>	-
BHIOL 63 BHIOL 1	1-645m 0-1.1 m	19042020 09042020	NT NT NC NA NC N NT NT	NT NT		NT 1			NT NT	NT NT	NT NT	NT N NT N	T NT	NE NE		MT 144	NT 14		NT P		NT NT NT NT	NE NE	× ×	M 100	NT N	NT NT	NT NT	NT NT	NT NC M NT	NT NT	NT N			M ×	α ΝΤ ΝΑ <mark>ΧΟ ΝΑ</mark> α ΝΤ	NT NT NT	NT N	NT N		NT NT			NT NT		NT NA	NT N	NT N	M 14	-
8HE01 1. 922110120 1.	4-1.5m 4-1.5m	54042020 54042020	NT NT NC NA NC N NT NT	NT NC NA				NA NE NA	NT NT	NT NT	NT NT NT	NT N NC NA NC	T NT	NT NT			MT NT NT		NT P		NT NT	NE NE	× ×	× ×		NT NT	NT NT	NT NT		NT NC NA	NT NT	M 1		NA ×	α ΝΤ ΝΑ ΝΟ ΝΑ. α ΝΤ	NT NT	NT NT	NT NT	NT NA	NT	NT N NA M		NT NR. W	NT NT	NT NC NA	NT NC M N	NT T	- M	-
BHON 2	1-29m	14042020	NT NT NT NT NT NT	NT NT	NT NT				NT NT NT	NT NT NT	NT NT NT	NT N NT N	T NT	N 2 1		NT 14	NT 14		NT P		NT NT	N 2	× ×	× ×		NT NT	NT NT	NT NT	NT NT NT	NT NT NT	NT NO			NA 🗶	α ητ α ητ η Ν. Ν. ΝΑ. α ητ	NT NT NT	NT NT	NT NT	NT NT	NT NT			NR NT		NT NA	NT NT	NT I		<u> </u>
901070620 00	6-01m	08042020	NC MA NC M NT NT NT NT	NT NT	NC NA	NE N		NA NE NA T NE NA NE NA	NT NT	NT NA	NT NT	NT N NT N	NA NC NT			NT NA	NT NA	NT NT	NA NC NT 7	M 10	NA NC NT NT NT NT	NA 100 NE	* *	M 10		NT NT	NT NT	NT NT	NC MA	NT NT	NE NA A			NA X	α ΝΑ α ΝΤ ΝΑ <u>× ΝΑ</u> α ΝΤ	NT NT	NT N	NT NT	NT NT	NT N			NR X		NC NA NT NC NA	NT NT	NT T	- M - M	<u>~</u>
BHOS 0.	2-0.3 m	62042020	NC NA NC N NT NT NC NA NC N	NC NA	NC NA	× × ×		NA NO NA	NC NA 1	NC NA NT NC NA	NC NA NT NC NA	NE NA NE NT N	NA NE I			NC NA	NC NA.	NT NG	NA NC	M NC	NA NC NT NT NA NC	NA 👟	× ×		NA NC N	N N N	NC NA	NC NA	NC M NT NC M	NC NA NT NC NA	NC NA A		NA NC	NA ×	NR NC NR a NT NR NC NR a NT	NC NA 1	NT N	NT N	NT N			NA 150	NA NC 1	0. <u>XC</u> NO NT 0. <u>XC</u> NO	NC NA	NC M NC	NA NC	M 50	-
BHIOS 0. EHIOSO.3-04- [TRIPLICATE] 0.	2-0.4 m 2-0.4 m	02042020	NC NA NC N NT NT NC NA NC N	NT N	NT N	× × ×	MA ME	NA 10 NA	NT NA	NT NA	NT N.	NT N	M K			<u>ж</u> м м ^т ж м	ж на. мт ж на.	NT N	NA NC	M 10		N	* *	* * * *	NA 15 N	NT NO.	NT	NT N	NT NC M	NT NC NA	NT NO N		NA 10	NA 🛫	NR ΝC NR σ NT NR NC NR	NT N. 1	с м н	NT N	NT N	NT N		- M - M	NR X	а <u>ж</u> ыл мт а. ж. м	NT N.	NT NT	NT I	- M - K	-
8H105 0	9-1.0 m 4-0.5 m	02042020	NT NT NT NT NT NT	NT NT		NE 1			NT NT	NT NT	NT NT	NT N	T NT NA HC T NT	NE NE			MT MT MT		NT P		NT NT NT NT	NP 100	× ×	× ×		NT NT	NT NT	NT NT			NT NA		- M	NA	α ητ ΝΑ <u>Χ</u> ΝΑ α ητ ΝΑ <u>Χ</u> ΝΑ	NT NT NT	NT NT		NT NT	NT		- 14 - 14 - 14			NT MA	NT NT NT N			-
BD1/20200516 0. BH10258 1.	4-0.5 m 4-1.5 m	19052000 19052000	NT NT NT NT	NT NT	NT NT	NT 1		r Mr NA MC NA. r Mr	NT NT	NT NT	NT NT	NT N	T NT	NE NE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***	1 2 2 2 2		NT P		NT NT	NE NE	* *		MT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NE NA			*	α ΝΤ ΝΑ Χ. ΝΑ. α ΝΤ	NT NT	NT NT	NT NT	NT NT	NT NT			NT NT		NT NA.	NT N	NT I		-
8H108 0.2 8H1098 0	3-0.25m 4-0.5m	17052020	NT NT NC NA NC N NT NT	NT NT	NT NC NA NT	Ne N			NT NC NA I	NT NC MA	NT NT NT	NT N	T NT				MT ** 14. MT		NT 7		NT NT NA NC NT NT	NF 100	× ×	× •	NA 10 10	NT NT NT	NT NT NT	NT NT	NT NC MA NT	NT NC NA NT	NT NA			NA ×	α ΝΤ ΝΑ <mark>ΝΟ ΝΑ</mark> α ΝΤ	NT	NT C MA N NT	NT N	NT NA NT	N" 		~ ~			NT NC MA	NT NT NT	NT T		-
BHE10 0	5-0.5m	521/2020 519/2020	NC NA NC N NT NT NC NA NC N	NT NT	NT NT NT			NA NC NA	NT NT NT NT	NT NT NT NT	NT NT NT	NT N NT N NC NA NC	T NT			MT NA	NT NT NT	NT NA NC	NT P	M N	NT NT NA NC	N ×	M <u>~</u>	× ×		NT NT NT	NT NT NT	NT NT NT	NT NT NT	NT NT NT	NE NA A			NA ×	α ΝΑ α ΝΤ ΝΑ ΝΟ ΝΑ α ΝΤ	NT NT NT	NT NT	NT N	NT NT				NR NT	NT NT NT	NT NA	NT NT NT NT	NT I	* ************************************	-
BHE11 1.	2-1.4 m	5192020	NT NT NT NT NC NA NC N NT NT	NT NT				T MT NA	NT NA	NT NA	NT NT	NT N NT N NT N	T NT			×	MT 100		NA NC NT 9 NA NC	M 10	NT NT NT NT	N ×	× ×	× ×		NT NT NT	NT NT	NT NT	NT NT	NT NT				NA ×	α ΝΑ ΝΤ α ΝΤ ΝΑ ΝΟ ΝΑ α ΝΤ	NT NT NT		NT N	NT NT	NT N			NR NT		NT NA	NT NO	NT T		<u>,</u>
2H1122 0	2-1.4 m	13062020	NC NA NC N NT NT NC NA NC N	NT NT	NC NA	× × ×			NT NA I	NT NA	NT NA	NE NA NE	NA NE I			<u>м</u> на ма	NT NA	NT NO.	NA NC	M 10	NA NC	NA 👟 NE	* *	× ×	NA <u>SC</u> N	NT NA	NT NA	NT NT	NC M NT	NT NA	NC NA A		NA 15	**	на ж. на. а на	NT NA	NT N		NT N			- <u>-</u>	NR. × 1		NT NA	NC M NC		- <u>-</u>	*
802070420 0.1	5-0.25m 5-0.25m	02042020	NC NA NC A	NT NT	NT NT			NA NC NA	NC NA I	NT NA	NT NA	NC NA NC	M NC			<u>ж</u> м.	NT NA	NT NO	NA NC	M 10	NT NT	N 10	* *		NA NC N	NT NO.	NT NA	NT NT	NC M	NC NA	NC NA A		NA NC	NA 15	NR. NC NR. σ NT NR. NC NR.	NT NA 1	NT N	NT N	NT N			- M	NA NT	a. x N	NT NA	NC M NC	NT T		-
8H813 0	4 - 0.5 m 9 - 1.0 m	02042020	NT NT NC NA NC N NT NT NC NA NC N				NT N NA NC NT N	T MT NA MC NA T MA MC NA	NT NT NT	NT NT NT	NT NC NA NT	NT N NC NA NC NT N NC NA NC	T NT NA NC I T NT NA NC I			MT MT MT	MT NT MT		NT P	M N	NT NT NA NC NT NT NA NC		M <u>×</u>	M K	NA NC N NA NC N	NT NT NT		NT NT NT	NT NC NA NT	NT NC NA			т мт NA мс NA мс	NA NG	σ ΝΤ ΝΑ ΝΟ ΝΑ σ ΝΤ ΝΑ ΝΟ ΝΑ	NT NC NA 1 NT	NT C NA N NT C NA N	NT NT	NT NT	NT NT NT NT NT NT		a M M K a M	NR NT		NT NC NA NT	NT NT NT	NT N NT T	NA 55	-
RH814 0.1 RH814 0.1	5-02m 2-0.3m	02042020	NT NT	NT NT	NT NT	NP 1			NT NT	NT NT	NT NT	NT N	T NT	NE NE		***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NT P		NT NT	Ne Me			MA MA	NT NT	NT NT	NT NT	NT NT	NT NT	NP NP			NA	α ΝΤ ΝΑ Χ. ΝΑ α ΝΤ	NT NT	NT NT	NT	NT NT	NT N	100 N		NT NT	NT NT	NT NA		NT I		-
BH15 03	m£0-2	02042020	NT NT	NT NT	NT NT				NT NT NT	NT NT NT	NT NT NT		T NT	10 NO				NT NT	NT 7		NT NT	Ne Ne		* *	N	NT NT	NT NT	NT NT	NT NT NT	NT NT NT	NT NA				α ΝΤ ΝΑ ΝΤ α ΝΤ	NT	NT NT	NT NT	NT NT	N ² N ²			NT NT	NT NT	NT NA	NT NT	NT T		-
BHR1S 0.	5-0.6m	02042020	NC NA NC N NT NT NC NA NC N NT NT	NT NT NT	NT NT NT			NA NC NA	NT NT NT NT	NT NT NC MA NT	NT NT NT	NT N NT N NT N	T NT NA NC I T NT			<u>ж</u> м ж	NT 14	NT NA NC	NA NC NT 9 NA NC NT 9	M N	NT NT NA NC NT NT	NA 140 NA 140 NA 140	M <u>×</u>		NA NC N	NT NT	NT NT NT	NT NT NT	NT NT NT NT	NT NT NC NA NT	NE NA A			NA ×	α ΝΑ α ΝΤ ΝΑ ΝΟ ΝΑ α ΝΤ	NT NT NT	NT N NT N	NT NT N	NT NT NT				NR. NT NR. NT NT		NT NT NT	NT NT NT NT	NT I		*
BHI16 0.	5-0.7 m	17052020	NT NT NT NT NC NA NC N NT NT	NT NT	NT NT			T MT NA	NT NA I	NT NA	NT NA	NT N NT N NC NA NC	T NT			мт мт мт	NT NT NT NT	NT NT NT	NA NC NT 9 NA NC NT 9	M N	NT NT NT NT NT NT	N 100 NE	× ×			NT NT NT	NT NT NT	NT NT	NC M NT NC M	NT NT				NA ×	α ΝΑ ΝΤ α ΝΤ ΝΑ ΝΟ ΝΑ α ΝΤ	NT NT NT	NT N	NT N	NT NT	NT N			NR NT		NT NA	NT NT	NT T		-
BH817 0.2	1-0.25m																~																																
601 ·	15.00																<u> </u>	_																															
BHI S	ik-4m																-																																
8H2 1. 8H2 6.	5-1.6m 5-4.6m																-																																
8H3 0. 8H3 0.	2-0.3 m 7-0.8 m																-																																
BH3107-0.8- [TRIPLICATE] 0. BH4 0.	7-0.8 m 2-0.4 m																-																																
8H6 0.3	0-1.1 m 6-0.4 m																-																																
6HG 0.	2-0.3 m															~																																	
847 1	4-1.5m															_																																	
BD/120719 1. BT1/2090713 1.	4-1.5m 4-1.5m															-																																	
8H7 2 8H8 0	0-2.1 m 2-0.3 m															-																																	
8H9 0.3 8H9 0.6	5-0.45 m 5-0.75 m	12072019	NT NT NC NA NC N NT NT NC NA NC N	NT NT NT				NA NE NA	NT NT NT	NT NT NT	NT NC NA NT	NT N NC MA NC NT N NC MA NC	T NT M NC T NT				MT 55 NR 56 NR	NT NA NC	NT P	M NC	NT NT NT NT NA NC		× ×	× ×	NA NE N		NT NT	NT NT NT	NT NC M NT NC M	NT NT NC NA			NA NC	NA ×	α ΝΤ ΝΑ ΝΟ ΝΑ. α ΝΤ ΝΑ ΝΟ ΝΑ	NT NC NA 1		NT NO	NT NT	NT NT			NT NA NT NA NT		NT NC NA NT	NT NC NA N	NT N		-
Lab meat HE/KGL value EE	651. value		HLHEL exceeds	nce EL/ES	L exceedanc detected by 1	e HLMGLand	GL, refer to the	edance III M. ex	cceedance ■ I - DC exceedance	ML and HL/	HEL or ELIES	SL exceedance																																					-

Notes: HLHGLDC ML a b c

NEPC, Schwäus B1 - HLD, HSLD, DC HSLD NEPC, Schwäus B1 - NLC, Hol GAGC, mplican of auxipia listed directly below the primary sample reporter updatalene laboratory result obtained from BTEXN subs oftenia applies to COT only.

#### Table F2: Summary of Results of Groundwater Analysis (All results in µg/L)

				Met	als (diss	solved)						PAH			1		TF	RH					BTEX				PCB								OCF	)											OPP	)				
Sample ID	Sample Date	Arsenic	Cadmium	Chromium (III + VI)	Copper	Lead	Mercury	Nickel	Zinc	Napthalene	Anthracene	Fluoranthene Benzo(a)pyrene	Phenanthrene	Total Positive PAH	TRH C6-C10 less BTEX	TRH >C10-C16 less Naphthalene	TRH C6-C9	TRH C6-C10 TRH > C10-C16	TRH > C16-C34	TRH > C34-C40	Benzene	Toulene	Ethylbenzene	allal Kr.o	m+p-xylene	Aroclor 1242	Aroclor 1254	Other PCB	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane	pp-DDE	pp-DDT	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Heptachlor Epoxide	Methoxychlor	Mirex	Other OCP	Azinphos-methyl	Bromophos-ethyl	Chlorpyrifos Diazinon	Dichlorovos	Dimethoate	Ethion	Fenitrothion Malathion	Parathion	Methyl Parathion	Other OPP
	-																							DP (2	020)																•											
BH103	4/30/2020	<1	<0.1	<1	3	<1	<0.05	6	12	<0.2	<0.1	<0.1 <0.	.1 <0.1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>i0 &lt;100</th><th>0 &lt;100</th><th>) &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>&lt;0.01</th><th>&lt;0.01</th><th><pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	<10	<50	<10 <	10 <5	i0 <100	0 <100	) <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	:0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BD1/20200424	4/30/2020	<1	<0.1	<1	26	<1	<0.05	8	21	<1	<1	<1 <1	<1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>0 &lt;100</th><th>0 &lt;100</th><th>0 &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>-</th><th></th><th></th><th>-</th><th>-</th><th></th><th>-</th><th></th><th>-</th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th><u> </u></th></pql<>	<10	<50	<10 <	10 <5	0 <100	0 <100	0 <1	<1	<1 <	:1 <	<2	-			-	-		-		-		-	-	-	-	-	-	-	-	-		-	-	-			-	<u> </u>
BH104	4/30/2020	<1	<0.1	<1	2	<1	<0.05	7	15	<0.2	<0.1	<0.1 <0.	.1 <0.1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>0 &lt;100</th><th>0 &lt;100</th><th>) &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>&lt;0.01</th><th>&lt;0.01</th><th><pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<></th></pql<>	<10	<50	<10 <	10 <5	0 <100	0 <100	) <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	:0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BH107A	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	5	140	<0.2	<0.1	<0.1 <0.	.1 <0.1	<0.1	<10	110	<10 <	10 11	0 650	<100	0 <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	-0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BH107B	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	6	64	<0.2	<0.1	<0.1 <0.	.1 <0.1	<0.1	<10	210	<10 <	10 21	0 500	<100	0 <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	-0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BH109B	5/26/2020	6	<0.1	<1	1	<1	<0.05	12	11	<0.2	<0.1	<0.1 <0.	.1 <0.1	<0.1	<10	<50	<10 <	10 <5	i0 <100	0 <100	) <1	1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	-0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BH112A	5/26/2020	<1	<0.1	3	<1	<1	<0.05	<1	4	<0.2	0.3	0.7 <0.	.1 0.3	3.5	<10	110	<10 1	11 11	0 140	<100	0 <1	<1	1 1	1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	-0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BH112B	5/26/2020	<1	<0.1	<1	1	<1	<0.05	7	21	<0.2	<0.1	<0.1 <0.	.1 0.2	0.17	<10	<50	<10 <	10 <5	0 <100	0 <100	) <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>-0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	-0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BD1/160520	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	7	20	<0.2	<0.1	<0.1 <0.	.1 0.2	0.18	<10	<50	<10 <	10 <5	0 <100	0 <100	0 <1	<1	<1 <	:1 <	<2	<0.01	<0.01	<pql< th=""><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	:0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
																								DP (20	)19b)																											
BH5	7/30/2019	<1	<0.1	<1	6	<1	<0.05	9	30	<0.2	<0.1	<0.1 <0.	.1 <0.1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>0 &lt;100</th><th>0 &lt;100</th><th>0 &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>&lt;2</th><th>&lt;2</th><th>&lt;2</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<10	<50	<10 <	10 <5	0 <100	0 <100	0 <1	<1	<1 <	:1 <	<2	<2	<2	<2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	:0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
BD1/20190730	7/30/2019	<1	<0.1	<1	7	<1	<0.05	10	31	<1	<1	<1 <1	<1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>i0 &lt;100</th><th>0 &lt;100</th><th>0 &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th>-</th></pql<>	<10	<50	<10 <	10 <5	i0 <100	0 <100	0 <1	<1	<1 <	:1 <	<2	-	-	-		-			-	-	-		-			-	-	-	-	-		-	-	-			-	-
BH8	7/30/2019	<1	<0.1	<1	2	<1	<0.05	2	11	<0.2	<0.1	<0.1 <0.	.1 <0.1	<pql< th=""><th>&lt;10</th><th>&lt;50</th><th>&lt;10 &lt;</th><th>10 &lt;5</th><th>i0 &lt;100</th><th>0 &lt;100</th><th>) &lt;1</th><th>&lt;1</th><th>&lt;1 &lt;</th><th>:1 &lt;</th><th>&lt;2</th><th>&lt;2</th><th>&lt;2</th><th>&lt;2</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.002</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th>&lt;0.001</th><th><pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<></th></pql<>	<10	<50	<10 <	10 <5	i0 <100	0 <100	) <1	<1	<1 <	:1 <	<2	<2	<2	<2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th>&lt;0.02</th><th>&lt;0.2</th><th>&lt;0.009 &lt;0.01</th><th>&lt;0.2</th><th>&lt;0.15 &lt;</th><th>&lt;0.2 &lt;</th><th>:0.2 &lt;0.</th><th>.05 &lt;0.00</th><th>4 &lt;0.2</th><th><pql< th=""></pql<></th></pql<>	<0.02	<0.2	<0.009 <0.01	<0.2	<0.15 <	<0.2 <	:0.2 <0.	.05 <0.00	4 <0.2	<pql< th=""></pql<>
																							As	sessmen	nt Crite	eria																										
Freshwater Defa (DGV) - 95% level	ult Guideline Values species protection ¹	24 as As (III); 13 as As(V)	0.5-1.3 ^a	6.7-18.1 as Cr (III) ^a ; 1.0 as Cr(VI)	1.4	10.2-47.7 ^a	ª 0.60	22.9- 1 64.4 ^a	16.6-46.9 ª	16 (	0.4*	1.4* 0.2	2 2.0	-	-	-	-	.   .	-		950	180*	80* 3	75 as X (m); 200 Xylene	(ylene 0 as (p)	0.6	0.03	-	0.001*	0.01*	0.0	08	-	0.01	0.	2	0.02	0.09		0.005	0.04*	-	0.02	-	0.01 0.01	-	0.15	- (	).2 0.0	0.004	÷ -	-
Health Screening groundwa	g Level (HSL) - sand, ater 2 m-<4 m	-	-	-	-		-	-	-				-	-	6000	NL	- N	NL -	-	-	5000	NL	NL	NL		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-			-	-
Health Screening groundwater 2	g Level (HSL) - clay, m-<4 m / 4 m-<8 m	-	-	-	-	-	-	-	-		-		-	-	30000	NL	- N	NL -	-	-	NL	NL	NL	NL		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-			-	-

Notes: PQL Practical Quantitation Limit NL Not Limiting BOLD Exceeds DGV

#### Table F2: Summary of Results of Groundwater Analysis (All results in $\mu$ g/L)

															۷	00														Other
Sample ID	Sample Date	Phenols	lsopropylbenzene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	trans-1, 3-Dichloropropene	cis-1,3-Dichloropropene	Vinyl chloride	Tetrachloroethene	Trichloroethene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Chlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,2-Dichloroethane	1,1,2,2-Tetrachloroethane	Carbon tetrachloride	Chloroform	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Other VOC	Cyanide
								-		-		DI	P (2020	)	-								-		•	-				
BH103	4/30/2020	<50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104	4/30/2020	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<pql< td=""><td>&lt;0.004</td></pql<>	<0.004
BD1/20200424	4/30/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH107A	5/26/2020	-	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>&lt;0.004</td></pql<>	<0.004
BH107B	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH109B	5/26/2020	-	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1	<pql< td=""><td>&lt;0.004</td></pql<>	<0.004
BH112A	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH112B	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BD1/260520	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
												DP	(2019)	b)																
BH5	7/30/2019	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BH8	7/30/2019	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BD1/20190730	7/30/2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			1	1					1	1		Assess	ment C	riteria	1											-				
Freshwater Defai (DGV) - 95% level	ult Guideline Values species protection ¹	320	30	-	-	-		-	-	-	-	10	170	160	260	60	-	270*	6500	1900*	400*	240*	770*	-	-	-	900*	1100*	-	7
Health Screening groundwa	j Level (HSL) - sand, ater 2 m-<4 m	-	-	-		-		-	-	-	-		-	-	-	-	-	-	-	-		-			-		-	-	-	-
Health Screening groundwater 2	g Level (HSL) - clay, m-<4 m / 4 m-<8 m	-	-	-		-		-	-	-	-			-	-	-	-	-	-	-		-			-		-	-	-	-

Notes:

PQL Practical Quantitation Limit

 NL
 Not Limiting

 BOLD
 Exceeds DGV

DOLD

- not defined/not analysed/not applicable

86767.03.R.002.Dft C September 2020



Table F3: Summary of Waste Class Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, VOC

						Me	tals			1	TR	H			BTEX																		PAH				
			Arsenic	TCLP Arsenic	Cadmium	otal Chromium	lead	TCLP Lead	Mercury (inorganic)	Nickel	TRHC6 - C9	C10-C36 re cov erable hydroc arbons	Berzene	Toluene	Ethy Ibenze ne	(ylenes (total)	Xylenes (o)	terzo(a)pyrene (BaP)	TCLP terzo(a)pyrene (BaP)	Acenaphthene	TCLP Acenaphthene	cen aphth ylen e	TCLP cenaphthylene	Anthracene	TCLP Anthracene	ben zo(a) antirra cene	TCLP Senzo(a)anthra cene	enzo(b,j+k)flu oranthene	TCLP Benzo(b,j+k)flu oranthene	ienzo(g,h,i)per yle ne	TCLP tenzo(g,h,i)per ylene	Chrysene	CLP Chrysene	libenzo(a,h)ant hracene	TCLP libenzo(a,h)ant hracene	Fluoranthene	TCLP Fluoranthene
		POI	4	0.05	0.4	F 1	1	0.03	0.1	1	25	50	0.2	0.5	-	3	1	0.05	0.001	0.1	0.001	4 0.1	0.001	0.1	0.001	0.1	0.001	0.2	0.002	01	0.001	0.1	0.001	0.1	0.001	0.1	0.001
Sample ID	Depth	Sample Date	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
																																			JP (2020)		
BH101	0.1 - 0.2 m	08/04/2020	4	NT	<0.4	10	150	0.1	0.3	6	<25	230	<0.2	<0.5	<1	<3	<1	0.73	NT	<0.1	NT	0.1	NT	0.3	NT	0.6	NT	1	NT	0.7	NT	0.8	NT	0.2	NT	1.3	NT
BH101/0.1-0.2 -		0000 100000		NT.			400	177			117	ьт	17	MT.	177	177	NT.	NT	177	177	177	177	107	AUT.	117	177	177	17	177	177	NT	177	17	NT	17	17	17
[TRIPLICATE]	0.1+0.2 m	08/04/2020			-0.4	0	100		0.5	0																											
BH101	0.9 - 1.0 m	08/04/2020	5	NT	0.4	9	250	0.34	0.3	9	<25	970	<0.2	<0.5	<1	<3	<1	2.5	<0.001	<0.1	<0.001	0.4	<0.001	0.1	<0.001	1.9	<0.001	3.6	<0.002	1.7	<0.001	1.2	<0.001	0.3	<0.001	2.8	<0.001
BH102	1.5 - 1.6 m	07/04/2020	<4	NT	<0.4	4	68	NT	0.1	4	<25	<50	<0.2	<0.5	4	<3	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.2	NT	0.1	NT	0.1	NT	<0.1	NT	0.2	NT
BH102	3.1 - 3.2 m	07/04/2020	5	NT	1	10	160	0.04	0.4	6	<25	<50	<0.2	<0.5	<1	<3	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	<0.1	NT	0.2	NT	<0.1	NT	0.3	NT
BH102	4.0 · 4.1 m	07/04/2020	5	NT	<0.4	16	170	<0.03	1.3	23	<25	<50	<0.2	<0.5	<1	ŝ	<1	0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	0.1	NT	40.1	NT	0.2	NT
BH102	4.9 - 5.0 m	07/04/2020	<4	NT	<0.4	8	20	NT	0.4	4	<25	<50	<0.2	<0.5	<1	<3	<1	0.08	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	⊲0.1	NT	<0.1	NT	⊲0.1	NT	0.1	NT
BH103	10-11m	08/04/2020	c4	NT	c0.4	2	57	NT	e0.1	1	c25	c50	c0.2	c0.5	4	3	4	0.08	NT	e0.1	NT	c0.1	NT	e0 1	NT	c0.1	NT	c0.2	NT	e0.1	NT	e0.1	NT	<i>d</i> 0.1	NT	0.1	NT
bindo	1.0 - 1.1 m	00042020					-																														
BH103	2.0 - 2.1 m	08/04/2020	9	NI	<0.4	8	28	NI	<0.1	в	<25	<50	<0.2	<0.5	<1	-3	<1	40.05	NI	<0.1	NI	<0.1	NI	<0.1	NI	<0.1	NI	<0.2	NI	<0.1	NI	<0.1	NI	40.1	NI	<0.1	NI
BH103	2.9 - 3 m	16/04/2020	12	NT	<0.4	8	19	0.2	⊲0.1	2	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH103	5.1 · 5.2 m	16/04/2020	<4	NT	<0.4	5	43	NT	0.4	2	<25	<50	<0.2	<0.5	<1	<3	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	0.1	NT	0.2	NT	<0.1	NT	0.4	NT
BH103	6.3 · 6.45 m	16/04/2020	<4	NT	<0.4	1	<1	NT	<0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH104	1.0 - 1.1 m	08/04/2020	5	NT	<0.4	7	45	NT	<0.1	11	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT
BH104	1.4 - 1.5 m	14/04/2020	<4	NT	<0.4	6	14	NT	<0.1	7	<25	<50	<0.2	<0.5	<1	<3	<1	0.53	NT	<0.1	NT	0.1	NT	0.2	NT	0.6	NT	0.9	NT	0.3	NT	0.6	NT	<0.1	NT	1.1	NT
BD2/140420	1.4 - 1.5 m	14/04/2020	10	NT	<0.4	9	69	NT	0.1	4	<25	860	<0.2	<0.5	<1	<3	<1	14	NT	0.5	NT	5.1	NT	6.7	NT	14	NT	19	NT	8.2	NT	13	NT	1.6	NT	31	NT
				17				177				~						0.00	177		177		177		17		hTT.		177		ALT.		17		17		177
BH104 BH105	2.8 - 2.9 m	08/04/2020		NT	0.4	12	280	0.1	40.1	- 3	-25	260	-0.2	-0.6	4	3	4	2	-0.001	-0.1	-0.001	0.2	-0.001	40.1	-0.001	1.0	-0.001	2.2	-0.002	-0.1	-0.001	40.1	×0.001	0.1	-0.001	2.6	-0.001
001000	0.05 0.1 11	007042020	0		0.0		200				~	400		0.5					40.001	-		0.0		0.5	10.001				-0.001	4.0	10.001	1.5	10.001	0.2	10.001	2.0	
BD1/0/0420	0.05 - 0.1 m	08/04/2020	,	NI	0.7	19	300	NI	0.0		<20	120	0.2	<0.5	<1	0	<1	1.0	NI	eu. 1	NI	0.3	NI	0.5	NI	1.4	NI	21	NI	1.3	NI		NI	0.2	NI	2.6	NI
BD1/070420b	0.05 - 0.1 m	08/04/2020	10	NT	0.8	20	460	NT	1.3	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106	0.2 - 0.3 m	07/04/2020	25	NT	<0.4	14	100	0.04	0.2	4	<25	1780	<0.2	<0.5	<1	<3	<1	28	<0.001	0.9	<0.001	8.5	0.002	9.5	<0.001	27	<0.001	39	<0.002	17	<0.001	24	<0.001	3.6	<0.001	53	<0.001
BH106	0.3 - 0.4 m	07/04/2020	6	NT	<0.4	43	610	0.74	0.7	10	<25	4090	<0.2	<0.5	<1	<3	<1	120	<0.001	2.1	0.006	13	0.003	50	0.002	160	<0.001	110	<0.002	41	<0.001	120	<0.001	9.1	<0.001	280	0.003
BH106/0.304 - [TRIPLICATE]	0.3 - 0.4 m	07/04/2020	7	NT	<0.4	24	350	NT	0.7	8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106	0.9 - 1.0 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	0.1	NT	<0.1	NT	0.2	NT
BH107B	04-05m	16/05/2020	c4	NT	c0.4	8	54	NT	0.2	4	c25	c50	e0.2	c0.5	4	3	4	13	NT	c0.1	NT	0.3	NT	0.4	NT	14	NT	2	NT	0.8	NT	13	NT	0.2	NT	22	NT
00400000540		1000500000				-								0.5					0.004		0.004						0.004	-	0.000	4.0	0.004				0.004		
BD1/20200516	U.4 - U.5 M	16/05/2020	C4	NI	<0.4	12	54	NI	0.2	'	<20	<00	0.2	<0.5	<1	0	<1	1.0	<0.001	eu. 1	0.001	0.4	20.001	0.5	20.001	1.7	<0.001	21	40.002	1.2	20.001	1.7	20.001	0.5	-00.001	2.6	80.001
BH107B	1.4 - 1.5 m	16/05/2020	<4	NT	<0.4	7	11	NT	<0.1	6	<25	<50	<0.2	<0.5	4	<3	<1	0.3	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.3	NT	0.4	NT	0.2	NT	0.3	NT	<0.1	NT	0.5	NT
BH108	0.23 - 0.25 m	17/05/2020	5	NT	<0.4	14	15	NT	⊲0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	2.7	<0.001	<0.1	<0.001	0.2	<0.001	0.2	<0.001	2.7	<0.001	3.6	<0.002	1.5	<0.001	2.6	<0.001	0.3	<0.001	3.1	<0.001
BH109B	0.4 - 0.5 m	17/05/2020	<4	NT	<0.4	9	19	NT	⊲0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	0.4	NT	<0.1	NT	0.1	NT	0.2	NT	0.4	NT	0.5	NT	0.2	NT	0.4	NT	<0.1	NT	0.8	NT
BH110	0.5 - 0.6 m	5/21/2020	43	NT	<0.4	10	30	NT	<0.1	3	<25	NT	<0.2	<0.5	<1	ŝ	<1	1.1	<0.001	<0.1	<0.001	<0.1	<0.001	<0.1	<0.001	1.5	<0.001	2	<0.002	0.6	<0.001	1.1	<0.001	0.6	<0.001	1.8	<0.001
BH111	0.4 - 0.5 m	5/19/2020	<4	NT	<0.4	5	10	NT	<0.1	3	<25	NT	<0.2	<0.5	~1	<3	<1	0.2	NT	<0.1	NT	<0.1	NT	0.4	NT	0.2	NT	0.3	NT	0.1	NT	0.2	NT	<0.1	NT	0.3	NT
BH111	1.3 - 1.4 m	5/19/2020	<4	NT	<0.4	16	330	0.09	1	16	<25	NT	<0.2	<0.5	<1	<3	<1	5.7	<0.001	<0.1	<0.001	<0.1	<0.001	0.9	<0.001	5	<0.001	12	<0.002	2.7	<0.001	6.9	<0.001	0.7	<0.001	8	<0.001
BH112B	0.6 - 0.7 m	18/05/2020	<4	NT	<0.4	11	21	NT	0.3	3	<25	860	<0.2	<0.5	<1	<3	<1	5.1	<0.001	1.6	<0.001	0.9	<0.001	3.9	<0.001	6	<0.001	7.2	<0.002	2.9	<0.001	5.9	<0.001	0.7	<0.001	14	<0.001
BH112B	1.2 · 1.4 m	13/05/2020	<4	NT	<0.4	3	5	NT	<0.1	3	<25	<50	<0.2	<0.5	<1	<3	<1	2.5	<0.001	0.5	<0.001	0.4	<0.001	1.6	<0.001	2.8	<0.001	3.5	<0.002	1.3	<0.001	2.8	<0.001	0.3	<0.001	5.8	<0.001
BH113	0.15 - 0.25 m	07/04/2020	26	NT	<0.4	A	44	NT	d0 1	4	-25	880	<0.2	<0.5	-1	-3	41	12	<0.001	0.4	<0.001	49	0.018	4.6	0.003	12	<0.001	17	40.002	7.5	<0.001	11	<0.001	1.4	<0.001	26	0.015
802440400	0.46 0.06	07/04/2022				-																									ALT.						
202/140420	0.10 ° 0.20 m	5770w2020	0.3	CU.4		34	- 23	KU. I	8.9	50	<20	<00	KU. 1	<u.1< th=""><th>40.1</th><th>«u.a</th><th>40.1</th><th>40.5</th><th>NI</th><th>40.5</th><th>ru</th><th>&lt;0.5</th><th>NI</th><th><u.5< th=""><th>NI</th><th>0.0</th><th>NI</th><th>cu.o</th><th>NI</th><th><u.5< th=""><th>NI</th><th>40.5</th><th>NI</th><th>40.5</th><th>NI</th><th>¥.U</th><th>3.001</th></u.5<></th></u.5<></th></u.1<>	40.1	«u.a	40.1	40.5	NI	40.5	ru	<0.5	NI	<u.5< th=""><th>NI</th><th>0.0</th><th>NI</th><th>cu.o</th><th>NI</th><th><u.5< th=""><th>NI</th><th>40.5</th><th>NI</th><th>40.5</th><th>NI</th><th>¥.U</th><th>3.001</th></u.5<></th></u.5<>	NI	0.0	NI	cu.o	NI	<u.5< th=""><th>NI</th><th>40.5</th><th>NI</th><th>40.5</th><th>NI</th><th>¥.U</th><th>3.001</th></u.5<>	NI	40.5	NI	40.5	NI	¥.U	3.001
BH113	0.4 - 0.5 m	07/04/2020	6	NT	<0.4	18	23	NT	⊲0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	1.2	<0.001	<0.1	<0.001	<0.1	<0.001	0.6	<0.001	1.2	<0.001	2	<0.002	0.7	<0.001	1	<0.001	0.1	<0.001	2.7	NT
BH113	0.9 - 1.0 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.3	NT	<0.1	NT	<0.1	NT	0.4	NT	0.3	NT	0.4	NT	0.2	NT	0.3	NT	<0.1	NT	0.7	NT
BH114	0.15 - 0.2 m	07/04/2020	14	NT	<0.4	11	93	NT	<0.1	14	<25	2199	<0.2	<0.5	<1	<3	<1	67	<0.001	2.4	0.003	36	0.025	44	0.005	40	<0.001	52	<0.002	20	<0.001	34	<0.001	3.1	<0.001	190	0.006
BH114	0.2 - 0.3 m	07/04/2020	52	NT	<0.4	21	260	0.86	0.1	5	<25	1540	<0.2	<0.5	<1	<3	<1	31	<0.001	1.3	0.002	16	0.039	18	0.01	45	<0.001	32	<0.002	14	<0.001	34	<0.001	3	<0.001	94	0.009
BH115	0.23 - 0.3 m	07/04/2020	6	<0.05	<0.4	12	24	NT	⊲0.1	1	<25	1500	<0.2	<0.5	<1	<3	<1	27	<0.001	0.8	0.001	16	0.009	19	0.004	37	<0.001	30	<0.002	10	<0.001	32	<0.001	2.8	<0.001	85	0.006
BH115/0.23-0.3	0.23 - 0.3 m	07/04/2020	100	NT	<0.4	14	38	NT	<0.1	3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH115	0.5-0.6m	07/04/2020	11	NT	<0.4	21	20	NT	<0.1	2	<25	<50	<0.2	<0.5	<1	<3	<1	1.8	<0.001	<0.1	<0.001	0.6	0.002	0.6	<0.001	1.8	<0.001	2.6	<0.002	1.1	<0.001	1.5	<0.001	0.2	<0.001	4	0.002
BH115	09-10-	07/04/2020	NT	NT	ыт	ыт	ыт	ыт	NT	NT	NT	NT	NT	NT	MT	NT	NT	0.05	NT	c0.1	NT	c0.1	NT	e0.1	NT	c0.1	NT	c0.2	NT	<i>c</i> 0.1	NT	eft 1	NT	40.1	NT	0.1	N ⁷
0.1110	0.0 - 7.0 m	47005/0000							-41											I		5.0.1	- ell	Sec. 1				~~~4		547.1				~~.1		v.1	
BH116	u.5 - 0.7 m	17/05/2020	<4	NT	<0.4	6	12	NT	⊲0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BD1/20200517	0.5 - 0.7 m	17/05/2020	3.6	NT	<0.4	8.2	16	NT	<0.1	-6	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.1	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5		<0.5	NT	<0.5	NT
BH117	0.2 - 0.25 m	17/05/2020	8	NT	<0.4	20	16	NT	⊲0.1	2	<25	2021	<0.2	<0.5	<1	<3	<1	49	<0.001	1.6	0.009	24	0.016	32	0.002	67	<0.001	70	<0.002	59	<0.001	63	<0.001	4.2	<0.001	130	0.003

																																			0P (2019b)		-
BH1	3 - 3.5 m	10/07/2019	<4	NT	<0.4	2	90	NT	0.9	3	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH1	3.8 - 4 m	10/07/2019	<4	NT	<0.4	<1	1	NT	<0.1	<1	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH2	1.5 - 1.6 m	10/07/2019	<4	NT	<0.4	5	24	NT	<0.1	1	<25	<50	<0.2	<0.5	<1	<3	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.2	NT	⊲0.1	NT	0.2	NT	<0.1	NT	0.3	NT
BH2	4.5 - 4.6 m	10/07/2019	12	NT	<0.4	8	24	NT	<0.1	2	<25	<50	<0.2	<0.5	<1	<3	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.3	NT	0.2	NT	0.2	NT	<0.1	NT	0.2	NT
BH3	0.2 - 0.3 m	12/07/2019	6	NT	<0.4	10	48	NT	0.1	2	<25	1320	<0.2	<0.5	<1	<3	<1	29	<0.001	1.6	NT	11	NT	11	NT	29	NT	38	NT	17	NT	28	NT	3.8	NT	66	NT
BH3	0.7 - 0.8 m	12/07/2019	9	NT	<0.4	9	45	NT	<0.1	2	<25	140	<0.2	<0.5	<1	<3	<1	4.5	<0.001	<0.1	NT	1.2	NT	1.7	NT	4.2	NT	6	NT	2.6	NT	3.8	NT	0.5	NT	9	NT
BH3/0.7-0.8 - ITRIPLICATEI	0.7 - 0.8 m	12/07/2019	10	NT	<0.4	10	16	NT	<0.1	2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH4	0.3 - 0.4 m	12/07/2019	8	NT	<0.4	4	33	NT	<0.1	1	<25	<50	<0.2	<0.5	<1	<3	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT
BH4	1.0 - 1.1 m	12/07/2019	10	NT	<0.4	9	49	NT	0.1	1	<25	<50	<0.2	<0.5	<1	<3	<1	0.06	NT	<0.1	NT	<0.1	NT	⊲0.1	NT	<0.1	NT	<0.2	NT	⊲0.1	NT	⊲0.1	NT	<0.1	NT	<0.1	NT
BH5	0.35 - 0.4 m	13/07/2019	<4	NT	<0.4	5	8	NT	0.1	4	<25	1370	<0.2	<0.5	<1	<3	<1	10	<0.001	0.1	NT	1.4	NT	1.8	NT	9.2	NT	13	NT	6	NT	8.1	NT	1	NT	15	NT
BH6	0.2 - 0.3 m	14/07/2019	7	NT	<0.4	17	30	NT	0.2	2	<25	1840	<0.2	<0.5	<1	<3	<1	23	<0.001	4.2	NT	36	NT	23	NT	28	NT	32	NT	14	NT	23	NT	2.8	NT	94	NT
BH7	1.0 - 1.1 m	12/07/2019	<4	NT	<0.4	2	4	NT	<0.1	1	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH7	1.4 - 1.5 m	13/07/2019	<4	NT	<0.4	3	2	NT	<0.1	1	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BD/120719	1.4 - 1.5 m	12/07/2019	<4	NT	<0.4	8	21	NT	<0.1	5	<25	<50	<0.2	<0.5	<1	<3	<1	1.6	<0.001	<0.1	NT	0.3	NT	0.3	NT	1.4	NT	2.4	NT	1	NT	1.3	NT	0.2	NT	2.7	NT
BT1/2090713	1.4 - 1.5 m	12/07/2019	<2	NT	<0.4	5.5	5.1	NT	<0.1	<1	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.1	<0.5	<0.5	<0.5	NT	<0.5	NT														
BH7	2.0 - 2.1 m	13/07/2019	<4	NT	<0.4	8	7	NT	<0.1	3	<25	<50	<0.2	<0.5	<1	<3	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH8	0.2 - 0.3 m	14/07/2019	4	NT	<0.4	9	33	NT	0.1	12	<25	<50	<0.2	<0.5	<1	<3	<1	1.2	<0.001	<0.1	NT	0.1	NT	0.2	NT	1	NT	2	NT	0.8	NT	0.8	NT	0.2	NT	1.7	NT
BH9	0.35 - 0.45 m	12/07/2019	<4	NT	<0.4	8	8	NT	<0.1	2	<25	<50	<0.2	<0.5	<1	<3	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	0.1	NT	0.2	NT	ح0.1	NT	0.5	NT
0.00		10.00000010	40	17				177				~						0.00	17		177		177		107		17						107		17		177
BH9	0.65 - 0.75 m	12/07/2019	18	NI	<0.4	23	15	NI	0.2		<25		<0.2	<0.5	<1	6	<1	40.05	NI	60.1	NI	<0.1	NI	40.1	N1	40.1	NI	<0.2	N	40.1	NI	40.1	NI	40.1	NI	<0.1	N
	CT1		100	N/A	20	100	100	N/A	4	40	650	10000	10	288	600	1000	N/A	0.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	SCC1		500	N/A	100	1900	1500	N/A	50	1050	650	10000	18	518	1080	1800	N/A	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
<u> </u>	TCLP1		N/A	5	N/A	N/A	N/A	5	N/A	N/A	650	10000	18	518	1080	1800	N/A	N/A	0.04	N/A	N/A	N/A	N/A														
<u> </u>	CT2		400	N/A	80	400	400	N/A	16	160	2600	40000	40	1152	2400	4000	N/A	3.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	SCC2		2000	N/A	400	7600	6000	N/A	200	4200	2600	40000	72	2073	4320	7200	N/A	23	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	TCLP2		N/A	20	N/A	N/A	N/A	20	N/A	N/A	2600	40000	72	2073	4320	7200	N/A	N/A	0.16	N/A	N/A	N/A	N/A														
	NEPC (1999) 9		1-50.	N/A	1	5-1000	2.200	N/A	0.03	1-517	N/A	500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ENM Ord	er (2014) Maximum	m Average	20	N/A	0.5	75	100	N/A	0.5	30	N/A	250	N/A	N/A	N/A	N/A	N/A	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ENM Ord	r (2014) Absolute Concentration	Maximum	40	N/A	1	150	200	N/A	1	60	N/A	500	0.5	65	25	15	15	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

CT1 exceedance TCLP1 and/or SCC1 exceedance CT2 exceedance CT2 exceedance Acbestos detection
NT = Nor tested NC = No criteria AD = Acbestos detected NAD = No acbestos detected

Notes:

- а QA/QC replicate of sample listed directly below the primary sample ь
- Total chromium used as initial screen for chromium(VI). Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- Criteria for Scheduled chemicals used as an initial sch Criteria for Scheduled chemicals used as an initial screen Criteria for Chlorpyrifics used as initial screen All criteria are in the same units as the reported results
- f
- g PQL

CT1

- SCC1
- Pactical quantitation limit NW EPA 2014, Wates Dastification Guidelines Part 1: Classifying Wate, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General sold waste NSW EPA 2014, Wates Dastification Guidelines Part 1: Classifying Wate, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General sold waste NSW EPA 2014, Wates Dastification Guidelines Part 1: Classifying Wate, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General sold waste NSW EPA 2014, Wates Dastification Guidelines Part 1: Classifying Wate, Maximum values of specific contaminant concentration (SCC) to classification but TCLP: Restricted sold waste NSW EPA 2014, Wates Classification Guidelines Part 1: Classifying Wate, Maximum values of specific contaminant concentration (TCLP) and specific contaminant concentration (SCC) when used together: General sold NSW EPA 2014, Wates Classification Guidelines Part 1: Classifying Wate, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted sold NSW EPA 2014, Wates Classification Guidelines Part 1: Classifying Wates, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted sold NSW EPA 2014, Wates Classification Guidelines Part 1: Classifying Wates, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted sold TCLP1
- CT2
- SCC2 TCLP2

<u> </u>	_				r	-	1	-	r		Filehoi			UFF	FUB		Aspestos			-	-		-	_		100		r					
luorene	P Fluorene	leno(1,2,3- d)pyrene	TCLP leno(1,2,3- d)pyrene	ph thale ne	TCLP phthalene	nanthrene	TCLP manthrene	Pyrene	stal PAHs	CLP PAH	Phenol	Total dosulfan	al Analysed OCP	al Analysed OPP	otal PCB	estos ID in I >0.1g/kg	ce Analysis	il Asbestos	carbon rachloride	ochloroben zene	loroform	1,2- lorobenzen e	1,4- lorobenzen e	1,2- iloroethane	1,1- Il oroethene	Styrene ylbenzene)	1,1,1,2- schloroetha ne	1,1,2,2- schloroetha ne	schloroethe ne	1,1,1- Il croethane	1,1,2- Il croethane	1,1,2- loroethylen e	yl Chloride
-	TQL	o la	Inc.	Na	^e Z	Å	Ť		μ.	F		ä	Tot	Tot	÷.	Ast sol	Tra	Tot	tot	Mon	ō	dich	dich	dict	Dici	nin)	tetra	tetra	tetra	trio1	trict	trich	Vin
0.1 mg/kg	0.001 mg/l	0.1 ma/ka	0.001 mo/l	0.1 ma/ka	0.001 mo/l	0.1 ma/ka	0.001 mo/l	0.1 ma/ka	0.05 mo/kg	mo/l	5 ma/ka	0.1 mo/ka	0.1 ma/ka	0.1 ma/ka	0.1 ma/ka				1 ma/ka	1 ma/ka	1 ma/ka	1 mo/ka	1 ma/ka	1 ma/ka	1 mo/ka	1 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	1 ma/ka	1
<0.1	NT	0.5	NT	<0.1	NT	0.5	NT	1.5	8.6	NT	-6	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.1	<0.001	13	e0.001	c0.1	<0.001	1.4	<0.001	3	20	NIL (a)VE	6	c0.1	e0 1	e0.1	e0.1	ΝΔΠ	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.1	NT	<0.1	NT	0.1	NT	0.2	1.2	NT	-6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
c0.1	NT	0.2	NT	c0.1	NT	0.2	NT	0.4	18	NT	NT	NT	NT	NT	NT	ΝΔΠ	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
-0.1	NT	0.1	NT	-0.1	NT	0.2	NT	0.2	1	MT	NT	NT	AT	NT	NT	NAD	NAD	NAD	AT	NT	NT	NT	NT	NT	NT	NT	NT	NT	AT	NT	MT	AT	NT
		0.1	141					0.4								100	100	NT.		NT.					141	141	141						
40.1	NI	40.1	NI NI	<0.1	NI NI	0.1	NI	0.1	0.3	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NT	NI	NI	NI NT	NI	NI NI	NI NI	NI NI	NT NT	NI	NI	NI NT	NI NT	NI NT	NI NI
40.1	NI	60.1	NI NI	<0.1	NI NI	0.1	NI	0.1	0.5	11	0	40.1	40.1	60.1	40.1	NAD	NHO	NAD	NI NI	NI	NI	NI NI	NI	NI NI	NI NI	NI NI	NT NT	NI	NI	NI NT	NI NT	NI NI	NI NI
40.1	NI	eg. 1	NI	<0.1	NI I	QU.1	NI	<0.1	<0.05	NI	NI	NI	NI	NI	NI	NHD	NPLD	NAL)	NI	NI	NI	NI .	NI	NI	141	NI	141	NI	11	NI I	NI I	11	NI I
40.1	NI	<0.1	NI	<0.1	NI	<0.1	NI	<0.1	<0.05	NI	0	40.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
40.1	NI	0.1	NI	<0.1	NI	0.1	NI	0.4	22	NI	NI	NI	NI	NI	NI	NAD	NAD	NAD	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.2	0.52	NT	-6	⊲0.1	<0.1	⊲0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.3	NT	<0.1	NT	0.5	NT	1.1	6.1	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1.5	NT	6.4	NT	0.4	NT	27	NT	31	180	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	0.56	NT	¢	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.1	<0.001	1	<0.001	<0.1	<0.001	1.3	⊲0.001	2.9	17	NIL (+)VE	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.8	NT	<0.1	NT	1.2	NT	2.7	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2.8	<0.001	13	<0.001	0.8	<0.001	41	0.004	54	320	0.0061	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
15	0.003	27	<0.001	1.1	0.003	150	0.015	280	1400	0.037	đ	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.2	0.88	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.1	NT	0.6	NT	<0.1	NT	1.2	NT	2.3	14	NT	-6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.2	<0.001	0.9	<0.001	<0.1	<0.001	1.3	<0.001	2.8	18	NIL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.1	NT	<0.1	NT	0.2	NT	0.5	2.8	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	<0.001	1.2	<0.001	<0.1	<0.001	0.4	<0.001	4.3	23	NIL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.2	NT	<0.1	NT	0.9	NT	0.8	4.9	NT	-6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.2	0.001	0.5	<0.001	<0.1	<0.001	0.6	<0.001	2.2	13	0.001	-6	⊲0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	1.9	NT	-6	⊲0.1	<0.1	⊲0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.2	<0.001	2.4	<0.001	0.2	<0.001	4	<0.001	7.8	57	NIL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2.4	<0.001	2.6	<0.001	2.1	0.01	16	0.01	14	85	0.02	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.8	<0.001	1	<0.001	0.5	<0.001	5.9	0.01	6.1	36	0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1	0.003	5.6	<0.001	<0.1	<0.001	21	0.022	26	150	0.044	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.5	NT	<0.5	NT	<0.5	NT	⊲0.5	NT	0.9	3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.1	<0.001	0.6	<0.001	<0.1	<0.001	2.2	0.004	2.7	15	0.0053	-6	⊲0.1	<0.1	⊲0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<0.1	NT	0.1	NT	<0.1	NT	0.5	NT	0.7	3.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
13	0.008	16	<0.001	8	0.007	160	0.033	170	860	0.091	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
6.6	0.01	11	<0.001	1.6	0.01	70	0.056	96	470	0.14	6	-0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4.7	0.006	9.4	<0.001	0.8	0.001	75	0.027	88	440	0.058	6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.2	<0.001	0.9	<0.001	<0.1	<0.001	2.6	0.006	4	22	0.011	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
e0.1	NT	e0.1	NT	c0.1	NT	0.1	NT	0.1	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
c0.1	NT	c0.1	NT	c0.1	NT		NT	c0.1	40.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
40.5	NT	-0.5	NT	<0.5	NT	40.5	NT	<0.5	40.5	NT	NT	NT	NT	NT	NT	NT	NT	лт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2.2	0.007	22	40.001	19	0.047	95	0.024	190	770		 		-01		-01	NAD	NAD	NAD	NT.	NT	ыт	NT.	NT	NT	NT	NT.	мт	мт	ыт	ыт	мт	ыт	NT
6.3	0.007	22	40.001	13	0.067	315	0.021	130	110	0.13	¢	-a).1	<u.1< td=""><td>&lt;0.1</td><td>&lt;0.1</td><td>reĐ</td><td>nAD</td><td>re4D</td><td>NI.</td><td>NI</td><td>NI</td><td>NI</td><td>nil.</td><td>NI</td><td>nil</td><td>NI</td><td>NI</td><td>rit I</td><td>ni i</td><td>191</td><td>ni</td><td>nl</td><td>nt</td></u.1<>	<0.1	<0.1	reĐ	nAD	re4D	NI.	NI	NI	NI	nil.	NI	nil	NI	NI	rit I	ni i	191	ni	nl	nt

⊲0.1	NT	<0.1	NT	<0.1	NT	⊲0.1	NT	<0.1	<0.05	NT	6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
⊲0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.4	1.6	NT	6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	0.1	NT	<0.1	NT	<0.1	NT	0.3	1.6	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3.6	NT	12	NT	1.2	NT	50	NT	73	370	0.014	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.4	NT	2	NT	0.1	NT	6.8	NT	9.8	53	0.0016	-6	⊲0.1	<0.1	<0.1	<0.5	NAD	NAD	NAD	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
⊲0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	0.57	NT	-6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	0.06	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.6	NT	4.3	NT	0.3	NT	10	NT	18	100	0.004	6	⊲0.1	<0.1	<0.1	<0.5	NAD	N4D	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
13	NT	11	NT	60	NT	180	NT	91	640	0.18	NT	NT	NT	NT	NT	NAD	N4D	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
c0.1	NT	c0.1	NT	c0.1	NT	0.1	NT	c0.1	0.1	NT	6	eft 1	e0 1	c0.1	e0.1	NAD	N4D	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
-01	NT	-0.1	NT	-0.1	NT	-0.1	NT	-0.1	-0.05	NT	-	-0.1	-0.1	-0.1	-0.1	NAD		NAD	NT	NT	NT	NT	NT	AT	NT	NT	NT	NT	NT	NT	NT	AT	NT
						4.4	-	0.0	40	All COMP			-0.1			NAD	100	100				141	-			141			111	111	141		
40.1	NI	0.8	NI	<0.1	NI INI	1.4	NI	2.0	10	INIL (+)VE	N	NI I	11	NI	NI	NAD	NAD .	NHL)	NI	NI	NI	NI .	NI	111	ini i	NI	NI	NI	NI	NI INI	NI	111	NI I
40.5	NI	<0.5	NI	<0.5	NI	40.5	NI	<0.5	<0.5	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<0.1	NT	0.6	NT	<0.1	NT	0.6	NT	1.7	11	NIL (+)VE	-6	⊲0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
⊲0.1	NT	0.1	NT	<0.1	NT	0.3	NT	0.6	2.6	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	200	N/A	288	60	<50	4	<50	N/A	N/A	N/A	10	2000	120	86	150	10	14	60	200	26	14	600	24	10	4
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	200	N/A	518	108	<50	7.5	<50	N/A	N/A	N/A	18	3600	126	4.3	7.5	0.5	0.7	108	360	46.8	25.2	1080	43.2	18	7.2
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	518	108	<50	7.5	<50	N/A	N/A	N/A	18	3600	126	4.3	7.5	0.5	0.7	108	360	46.8	25.2	1080	43.2	18	7.2
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	800	N/A	1152	240	<50	16	<50	N/A	N/A	N/A	40	8000	480	344	600	40	56	240	800	104	56	2400	96	40	16
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	800	N/A	2073	432	<50	30	<50	N/A	N/A	N/A	72	14400	864	620	1080	72	100	432	1440	187.2	100.8	4320	172.8	72	28.8
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	800	N/A	2073	432	<50	30	<50	N/A	N/A	N/A	72	14400	864	620	1080	72	100	432	1440	187.2	100.8	4320	172.8	72	28.8
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

# Appendix C

Standard Approach to Environmental Risk Assessment



## Appendix C: Standard Approach to Environmental Risk Assessment

The SEARs require an environmental risk analysis be included in the EIS to identify potential environmental impacts associated with the Project.

The following represents the standard way in which the environmental risk assessment can be undertaken in the RAP that can then inform the overall risk assessment which will be included in the overarching EIS document.

Risk comprises the likelihood of an event occurring and the consequences of that event. For the Project, the following descriptors were adopted for 'likelihood' and 'consequence'.

#### Table C1: Risk Descriptors and Risk Matrix

Contamination	Likelihood	Consequence	Risk Matrix
Soil	Almost Certain (A)	3	Medium
Groundwater	Unlikely (D)	3	Low

It should be noted that the above risk assessment is based on historical and current contamination data findings. The unexpected finds protocol in Section 14 of the RAP provides a procedure to be followed in the event of encountering an unexpected finds of contamination during the site preparation and construction work.